File size: 21,002 Bytes
5203884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# coding=utf-8
# Copyright (c) 2023 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch

from megatron import (get_args,
                      is_rank_0,
                      mpu,
                      print_rank_0,
                      update_num_microbatches,
                      utils,
                      get_tokenizer)
from tools.convert_checkpoint import verify_checkpoint
from megatron.enums import PositionEmbeddingType

_CHECKPOINT_VERSION = None

def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
    if _CHECKPOINT_VERSION is not None:
        assert _CHECKPOINT_VERSION == value, \
            "checkpoint versions do not match"
    _CHECKPOINT_VERSION = value

def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION

def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
    arguments and the one retrieved from checkpoint."""
    args = get_args()

    def _compare(arg_name, old_arg_name=None):
        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name)
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    if not args.mos and not args.kd:
        _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
    _compare('position_embedding_type')
    # with alibi we can change `max_position_embeddings`
    if args.position_embedding_type != PositionEmbeddingType.alibi:
        _compare('max_position_embeddings')
    if args.vocab_file:
        _compare('make_vocab_size_divisible_by')
        _compare('padded_vocab_size')
        _compare('tokenizer_type')
    if get_checkpoint_version() < 3.0:
        _compare('tensor_model_parallel_size',
                 old_arg_name='model_parallel_size')
    if get_checkpoint_version() >= 3.0:
        _compare('tensor_model_parallel_size')
        _compare('pipeline_model_parallel_size')


def ensure_directory_exists(filename):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


def get_checkpoint_name(checkpoints_path, iteration,
                        release=False):
    """A unified checkpoint name."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
    # Use both the tensor and pipeline MP rank.
    if mpu.get_pipeline_model_parallel_world_size() == 1:
        return os.path.join(checkpoints_path, directory,
                            'mp_rank_{:02d}'.format(
                                mpu.get_tensor_model_parallel_rank()),
                            'model_optim_rng.pt')
    return os.path.join(checkpoints_path, directory,
                        'mp_rank_{:02d}_{:03d}'.format(
                            mpu.get_tensor_model_parallel_rank(),
                            mpu.get_pipeline_model_parallel_rank()),
                        'model_optim_rng.pt')


def get_checkpoint_tracker_filename(checkpoints_path):
    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


def save_checkpoint(iteration, model, optimizer, lr_scheduler):
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
    if not args.deepspeed:
        model = utils.unwrap_model(model)

    print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

    if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0 \
        or args.deepspeed:

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
        state_dict['checkpoint_version'] = 3.0
        state_dict['iteration'] = iteration
        state_dict['tokens'] = args.consumed_train_tokens
        state_dict['checkpoint_info'] = _checkpoint_info()

        # DeepSpeed saves the model/optimizer/scheduler
        if not args.deepspeed:
            if len(model) == 1:
                state_dict['model'] = model[0].state_dict_for_save_checkpoint()
            else:
                for i in range(len(model)):
                    mpu.set_virtual_pipeline_model_parallel_rank(i)
                    state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint()
            
            # Optimizer stuff.
            if not args.no_save_optim:
                if optimizer is not None:
                    state_dict['optimizer'] = optimizer.state_dict()
                if lr_scheduler is not None:
                    state_dict['lr_scheduler'] = lr_scheduler.state_dict()

        # RNG states.
        if not args.no_save_rng:
            state_dict['random_rng_state'] = random.getstate()
            state_dict['np_rng_state'] = np.random.get_state()
            state_dict['torch_rng_state'] = torch.get_rng_state()
            if get_args().device.type == "cuda":
                state_dict['cuda_rng_state'] = torch.cuda.get_rng_state()
            elif get_args().device.type == "hpu":
                import habana_frameworks.torch.hpu.random as rand_hpu
                state_dict['cuda_rng_state'] = rand_hpu.get_rng_state()
            state_dict['rng_tracker_states'] \
                = mpu.get_cuda_rng_tracker().get_states()

        # Save.
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        if not args.deepspeed:
            ensure_directory_exists(checkpoint_name)
            torch.save(state_dict, checkpoint_name)

    if args.deepspeed:
        #megatron model uses state_dict_for_save_checkpointing instead of the standard state_dict
        #state_dict is used by deepspeed for module saving so it needs to point to the right function
        if args.no_pipeline_parallel:
            original_state_dict = model[0].module.state_dict
            model[0].module.state_dict = model[0].module.state_dict_for_save_checkpoint

        # Saving is a collective communication
        checkpoint_name = get_checkpoint_name(args.save, iteration)

        # Trim off the filename and mp_rank_* directory.
        for _ in range(3):
            checkpoint_name = os.path.dirname(checkpoint_name)
        model[0].save_checkpoint(checkpoint_name, client_state=state_dict)

        if args.no_pipeline_parallel:
            model[0].module.state_dict = original_state_dict

    # Wait so everyone is done (necessary)
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0('  successfully saved checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

    # And update the latest iteration
    if is_rank_0():
        if args.verify_checkpoint:
            ckpt_folder = os.path.join(args.save, f"global_step{iteration}")
            prev_iter = iteration - args.save_interval
            ckpt_ok = verify_checkpoint(ckpt_folder,args.verify_checkpoint_model_type,sequence_parallel=args.sequence_parallel)
            if not ckpt_ok:
                # Fix latest file to previous valid ckpt
                with open(os.path.join(args.save, 'latest'), 'w') as fd:
                    fd.write(f"global_step{prev_iter}")
                raise RuntimeError(f"verify_checkpoint failed!!! {ckpt_folder}")
            else:
                print_rank_0(f"successfully passed ckpt validation: {ckpt_folder}")

        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))

    # Wait so everyone is done (not necessary)
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

def _transpose_first_dim(t, num_splits, num_splits_first, model):
    input_shape = t.size()
    # We use a self_attention module but the values extracted aren't
    # specific to self attention so should work for cross attention as well
    while hasattr(model, 'module'):
        model = model.module
    attention_module = model.language_model.encoder.layers[0].self_attention
    hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
    num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
    if num_splits_first:
        """[num_splits * np * hn, h]
        -->(view) [num_splits, np, hn, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_splits, num_attention_heads_per_partition,
             hidden_size_per_attention_head) + input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(0, 1).contiguous()
    else:
        """[np * hn * num_splits, h]
        -->(view) [np, hn, num_splits, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_attention_heads_per_partition,
             hidden_size_per_attention_head, num_splits) +\
             input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(1, 2).contiguous()
    t = t.view(*input_shape)

    return t

def fix_query_key_value_ordering(model, checkpoint_version):
    """Fix up query/key/value matrix ordering if checkpoint
    version is smaller than 2.0
    """
    if checkpoint_version < 2.0:
        if isinstance(model, list):
            assert len(model)==1
            model = model[0]
        for name, param in model.named_parameters():
            if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 3, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 3, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
            if name.endswith(('.key_value.weight', '.key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 2, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 2, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
        print_rank_0(" succesfully fixed query-key-values ordering for"
                    " checkpoint version {}".format(checkpoint_version))

def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load', strict=True, load_only_weights=False):
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
    args = get_args()
    load_dir = getattr(args, load_arg)

    if args.deepspeed:
        loaded_dir, state_dict = model[0].load_checkpoint(load_dir,load_module_strict=strict)
        if loaded_dir is None:
            print_rank_0('WARNING: could not find the metadata file {} '.format(
                load_dir))
            print_rank_0('    will not load any checkpoints and will start from '
                        'random')
            return 0
        release = False
    else:
        model = utils.unwrap_model(model)

        # Read the tracker file and set the iteration.
        tracker_filename = get_checkpoint_tracker_filename(load_dir)

        # If no tracker file, return iretation zero.
        if not os.path.isfile(tracker_filename):
            print_rank_0('WARNING: could not find the metadata file {} '.format(
                tracker_filename))
            print_rank_0('    will not load any checkpoints and will start from '
                        'random')
            return 0

        # Otherwise, read the tracker file and either set the iteration or
        # mark it as a release checkpoint.
        iteration = 0
        release = False
        with open(tracker_filename, 'r') as f:
            metastring = f.read().strip()
            try:
                iteration = int(metastring)
            except ValueError:
                release = metastring == 'release'
                if not release:
                    print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                        tracker_filename))
                    sys.exit()

        if not args.mos and not args.kd:
            assert iteration > 0 or release, 'error parsing metadata file {}'.format(
                tracker_filename)

        # Checkpoint.
        checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
        print_rank_0(f' loading checkpoint from {args.load} at iteration {iteration}')

        # Load the checkpoint.
        try:
            state_dict = torch.load(checkpoint_name, map_location='cpu')
        except ModuleNotFoundError:
            from megatron.fp16_deprecated import loss_scaler
            # For backward compatibility.
            print_rank_0(' > deserializing using the old code structure ...')
            sys.modules['fp16.loss_scaler'] = sys.modules[
                'megatron.fp16_deprecated.loss_scaler']
            sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
                'megatron.fp16_deprecated.loss_scaler']
            state_dict = torch.load(checkpoint_name, map_location='cpu')
            sys.modules.pop('fp16.loss_scaler', None)
            sys.modules.pop('megatron.fp16.loss_scaler', None)
        except BaseException as e:
            print_rank_0('could not load the checkpoint')
            print_rank_0(e)
            sys.exit()

    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

    # Set iteration.
    if args.finetune or release or args.reset_iteration or load_only_weights:
        iteration = 0
        # Make DeepSpeed engine aware of this reset of iteration
        model[0].global_steps = 0
    else:
        try:
            iteration = state_dict['iteration']
            if 'tokens' in state_dict:
                args.consumed_train_tokens = state_dict['tokens']
        except KeyError:
            try:  # Backward compatible with older checkpoints
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()

    # Check arguments.
    reset_train_valid_samples = args.reset_iteration
    if not load_only_weights and not reset_train_valid_samples:
        assert args.consumed_train_samples == 0
        assert args.consumed_valid_samples == 0
        if 'args' in state_dict:
            checkpoint_args = state_dict['args']
            if not args.universal_checkpoint:
                check_checkpoint_args(checkpoint_args)
            args.consumed_train_samples = getattr(checkpoint_args,
                                                'consumed_train_samples', 0)
            update_num_microbatches(consumed_samples=args.consumed_train_samples)
            args.consumed_valid_samples = getattr(checkpoint_args,
                                                'consumed_valid_samples', 0)
        else:
            print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
    if not args.deepspeed:
        if len(model) == 1:
            model[0].load_state_dict(state_dict['model'], strict=strict)
        else:
            for i in range(len(model)):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                model[i].load_state_dict(state_dict['model%d' % i], strict=strict)

    # Fix up query/key/value matrix ordering if needed
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)

    # Optimizer.
    if not args.deepspeed:
        if not release and not args.finetune and not args.no_load_optim:
            try:
                if optimizer is not None:
                    optimizer.load_state_dict(state_dict['optimizer'])
                if lr_scheduler is not None and not args.no_load_lr_state:
                    lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
            except KeyError:
                print_rank_0('Unable to load optimizer from checkpoint {}. '
                            'Specify --no-load-optim or --finetune to prevent '
                            'attempting to load the optimizer state, '
                            'exiting ...'.format(checkpoint_name))
                sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            random.setstate(state_dict['random_rng_state'])
            np.random.set_state(state_dict['np_rng_state'])
            torch.set_rng_state(state_dict['torch_rng_state'])
            if get_args().device.type == "cuda":
                torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
            elif get_args().device.type == "hpu":
                import habana_frameworks.torch as htcore
                htcore.hpu.random.set_rng_state(state_dict['cuda_rng_state'])
            # Check for empty states array
            if not state_dict['rng_tracker_states']:
                raise KeyError
            mpu.get_cuda_rng_tracker().set_states(
                state_dict['rng_tracker_states'])
        except KeyError:
            print_rank_0('Unable to load rng state from checkpoint {}. '
                         'Specify --no-load-rng or --finetune to prevent '
                         'attempting to load the rng state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {args.load} '
                 f'at iteration {iteration}')

    return iteration


def load_biencoder_checkpoint(model, only_query_model=False,
        only_context_model=False, custom_load_path=None):
    """
    selectively load retrieval models for indexing/retrieving 
    from saved checkpoints
    """

    args = get_args()

    model = utils.unwrap_model(model)

    load_path = custom_load_path if custom_load_path is not None else args.load

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    ret_state_dict = state_dict['model']

    if only_query_model:
        ret_state_dict.pop('context_model')
    if only_context_model:
        ret_state_dict.pop('query_model')

    assert len(model) == 1
    model[0].load_state_dict(ret_state_dict)
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


def _checkpoint_info():
    args = get_args()
    tokenizer = get_tokenizer()

    return {
        "padded_vocab_size": args.padded_vocab_size,
        "original_vocab_size": tokenizer.vocab_size,
    }