File size: 17,249 Bytes
14a7d24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import os
import time
import tensorflow as tf
from copy import deepcopy
from collections import defaultdict
from tensorboard.plugins.hparams import api as hp
from tensorflow.python.eager import context
from tensorflow.keras import backend as K
from tensorflow.python.ops import summary_ops_v2
from tensorflow.python.summary import summary as tf_summary
from tensorflow.python.training.summary_io import SummaryWriterCache
from tensorflow.compat.v1.keras.callbacks import TensorBoard, Callback
from tensorflow.python.training.session_run_hook import SessionRunHook, SessionRunArgs
def _remove_prefix(s, prefix):
if s.startswith(prefix):
s = s[len(prefix):]
return s
def _parse_precision(hparams: dict):
# Check if 'hparams' contain data type.
if 'dtype' in hparams or 'data_type' in hparams:
param_name = 'dtype' if 'dtype' in hparams else 'data_type'
return hparams[param_name]
# Check if bf16 conversion flags are set.
flag = os.environ.get('TF_BF16_CONVERSION', '0')
flag = flag.lower()
try:
value = int(flag)
except:
value = -1
if flag == 'false' or value == 0:
return 'fp32'
elif flag == 'true' or value == 1:
return 'bf16'
return flag
def _set_precision_if_missing(hparams: dict):
if 'precision' not in hparams:
hparams['precision'] = _parse_precision(hparams)
return hparams
def _copy_and_clean_hparams(hparams: dict):
hparams_ = dict()
for name, value in hparams.items():
if isinstance(value, (str, bool, int, float)):
hparams_[name] = value
continue
try:
hparams_[name] = str(value)
except:
tf.compat.v1.logging.info(
f'Conversion of parameter "{name}" to string failed. '
'Parameter will not be saved.')
return hparams_
def write_hparams_v1(writer, hparams: dict):
hparams = _copy_and_clean_hparams(hparams)
hparams = _set_precision_if_missing(hparams)
with tf.compat.v1.Graph().as_default():
if isinstance(writer, str):
writer = SummaryWriterCache.get(writer)
summary = hp.hparams_pb(hparams).SerializeToString()
writer.add_summary(summary)
def write_hparams_v2(writer, hparams: dict):
hparams = _copy_and_clean_hparams(hparams)
hparams = _set_precision_if_missing(hparams)
with writer.as_default():
hp.hparams(hparams)
class ExamplesPerSecondEstimatorHook(tf.compat.v1.train.StepCounterHook):
"""Calculate and report global_step/sec and examples/sec during runtime."""
# Copy-pasted from tensorflow_estimator/python/estimator/tpu/tpu_estimator.py
def __init__(self,
batch_size=None,
every_n_steps=1,
every_n_secs=None,
output_dir=None,
summary_writer=None,
extra_metrics=None,
log_global_step=False,
verbose=False,
tags_to_print=None):
super().__init__(
every_n_steps=every_n_steps,
every_n_secs=every_n_secs,
output_dir=output_dir,
summary_writer=summary_writer)
self._metrics = extra_metrics or {}
self._verbose = verbose
self._tags_to_print = tags_to_print
if log_global_step:
# Because estimator will log global_step/sec by default
# when log_step_count_steps is not None saving it here
# would duplicate events in TensorBoard.
# Use log_global_step=True when RunConfig.log_step_count_step=None
self._metrics['global_step/sec'] = 1
if batch_size is not None:
self._metrics['examples/sec'] = batch_size
def _add_summary(self, tag, value, step):
Summary = tf.compat.v1.Summary
global_step_summary = Summary(value=[
Summary.Value(tag=tag, simple_value=value)
])
self._summary_writer.add_summary(global_step_summary, step)
if (self._verbose or
(self._tags_to_print is not None and tag in self._tags_to_print)):
tf.compat.v1.logging.info(f'{tag}: {value}')
def _log_and_record(self, elapsed_steps, elapsed_time, global_step):
global_step_per_sec = elapsed_steps / elapsed_time
if self._summary_writer is not None:
for name, factor in self._metrics.items():
value = factor * global_step_per_sec
self._add_summary(name, value, global_step)
def after_create_session(self, session, coord):
self._timer.reset()
class ExamplesPerSecondKerasHookV1(Callback):
def __init__(self,
every_n_steps=1,
every_n_secs=None,
output_dir=None,
summary_writer=None,
batch_size=None):
self.writer = summary_writer or SummaryWriterCache.get(output_dir)
self._timer = tf.compat.v1.train.SecondOrStepTimer(
every_n_secs, every_n_steps)
self._global_step = 0
self._total_examples = 0
self._should_trigger = True
self._batch_size = batch_size
def on_train_begin(self, logs=None):
self._timer.reset()
def on_train_batch_begin(self, batch, logs=None):
# batch is index within current epoch, if we want to dump data through all epochs then we need to use global_step
self._should_trigger = self._timer.should_trigger_for_step(self._global_step)
def on_predict_batch_end(self, batch, logs=None):
self._global_step += 1
def on_train_batch_end(self, batch, logs=None):
step = self._global_step
self._total_examples += logs.get('size', 0)
if self._should_trigger:
elapsed_time, elapsed_steps = self._timer.update_last_triggered_step(
step)
if elapsed_time is not None:
total_examples = self._total_examples
if self._batch_size is not None:
total_examples = self._batch_size * elapsed_steps
self._log_and_record(
elapsed_steps, elapsed_time, step, total_examples)
self._total_examples = 0
self._global_step += 1
def _log_and_record(self, elapsed_steps, elapsed_time,
global_step, total_examples=None):
Summary = tf.compat.v1.Summary
global_step_per_sec = elapsed_steps / elapsed_time
if self.writer is not None:
global_step_summary = Summary(value=[
Summary.Value(
tag='global_step/sec', simple_value=global_step_per_sec)
])
self.writer.add_summary(global_step_summary, global_step)
if total_examples is not None:
examples_per_sec = total_examples / elapsed_time
example_summary = Summary(value=[
Summary.Value(tag='examples/sec',
simple_value=examples_per_sec)
])
self.writer.add_summary(example_summary, global_step)
class ExamplesPerSecondKerasHookV2(ExamplesPerSecondKerasHookV1):
def __init__(self,
every_n_steps=1,
every_n_secs=None,
output_dir=None,
summary_writer=None,
batch_size=None):
writer = summary_writer or summary_ops_v2.create_file_writer_v2(output_dir)
super().__init__(every_n_steps, every_n_secs, output_dir, writer, batch_size)
def _log_and_record(self, elapsed_steps, elapsed_time,
global_step, total_examples=None):
global_step_per_sec = elapsed_steps / elapsed_time
if self.writer is not None:
with self.writer.as_default(), summary_ops_v2.always_record_summaries():
summary_ops_v2.scalar('global_step/sec', global_step_per_sec,
step=global_step)
if total_examples is not None:
examples_per_sec = total_examples / elapsed_time
summary_ops_v2.scalar('examples/sec', examples_per_sec,
step=global_step)
ExamplesPerSecondKerasHook = ExamplesPerSecondKerasHookV1
class TBSummary(object):
"""
Creates a proxy for FileWriter for TensorBoard.
:param log_dir: - path where experiment is running (usually the same as
model_dir in Estimator)
"""
def __init__(self, log_dir: str):
super().__init__()
self._log_dir = log_dir
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
pass
def add_scalar(self, tag, value, global_step=None):
with tf.compat.v1.Graph().as_default():
writer = SummaryWriterCache.get(self._log_dir)
summary = tf.compat.v1.Summary(
value=[tf.compat.v1.Summary.Value(tag=tag, simple_value=value)])
event = tf.compat.v1.Event(summary=summary)
event.wall_time = time.time()
event.step = global_step
writer.add_event(event)
class TensorBoardWithHParamsV1(TensorBoard):
"""
Adds TensorBoard visualization to training process.
Writes training tfevent file into default log directory, but
stores evaluation in log_dir/eval subdirectory.
"""
def __init__(self, hparams, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams = hparams
self._train_summary = None
self._eval_summary = None
def _switch_writer(self, mode):
self.writer = self._train_summary if mode == 'train' else self._eval_summary
def _init_writer(self, model):
"""Sets file writer."""
if context.executing_eagerly():
raise NotImplementedError('hook does not support eager execution')
self._train_summary = SummaryWriterCache.get(self.log_dir)
self._eval_summary = SummaryWriterCache.get(
os.path.join(self.log_dir, 'eval'))
self._switch_writer('train')
write_hparams_v1(self.writer, self.hparams)
def _write_custom_summaries(self, step, logs=None):
"""
This methods works on the assumption that metrics containing `val`
in name are related to validation (that's the default in Keras).
"""
logs = logs or {}
train_logs = {}
eval_logs = {}
for name, value in logs.items():
if 'val' in name:
if name.startswith('batch_val_'):
name = 'batch_' + _remove_prefix(name, 'batch_val_')
elif name.startswith('epoch_val_'):
name = _remove_prefix(name, 'epoch_val_')
eval_logs[name] = value
else:
if name.startswith('batch_'):
name = _remove_prefix(name, 'batch_')
train_logs[name] = value
self._switch_writer('eval')
super()._write_custom_summaries(step, eval_logs)
self._switch_writer('train')
super()._write_custom_summaries(step, train_logs)
class TensorBoardWithHParamsV2(TensorBoard):
"""
Adds TensorBoard visualization to training process.
Writes training tfevent file into default log directory, but
stores evaluation in log_dir/eval subdirectory.
"""
def __init__(self, hparams, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams = hparams
def set_model(self, model):
"""Sets Keras model and writes graph if specified."""
self.model = model
self._log_write_dir = self._get_log_write_dir()
self._train_dir = self._log_write_dir
self._train_step = self.model._train_counter # pylint: disable=protected-access
self._val_dir = os.path.join(self._log_write_dir, 'eval')
self._val_step = self.model._test_counter # pylint: disable=protected-access
self._writers = {} # Resets writers.
self._should_write_train_graph = False
if self.write_graph:
self._write_keras_model_summary()
self._should_write_train_graph = True
if self.embeddings_freq:
self._configure_embeddings()
write_hparams_v2(self._train_writer, self.hparams)
def _log_epoch_metrics(self, epoch, logs):
"""Writes epoch metrics out as scalar summaries.
Arguments:
epoch: Int. The global step to use for TensorBoard.
logs: Dict. Keys are scalar summary names, values are scalars.
"""
if not logs:
return
train_logs = {k: v for k,
v in logs.items() if not k.startswith('val_')}
val_logs = {k: v for k, v in logs.items() if k.startswith('val_')}
train_logs = self._collect_learning_rate(train_logs)
with summary_ops_v2.always_record_summaries():
if train_logs:
with self._train_writer.as_default():
for name, value in train_logs.items():
summary_ops_v2.scalar(name, value, step=epoch)
if val_logs:
with self._val_writer.as_default():
for name, value in val_logs.items():
name = name[4:] # Remove 'val_' prefix.
summary_ops_v2.scalar(name, value, step=epoch)
class TensorBoardHook(SessionRunHook):
def __init__(self,
output_dir="",
profile_steps=""
):
self.output_dir = output_dir
profile_steps_error_message = (
'profile_steps must be a comma separated pair of positive integers, '
'specifying the first and last steps to be profiled.'
)
try:
profile_steps = [int(i) for i in profile_steps.split(',')]
except ValueError:
raise ValueError(profile_steps_error_message)
if len(profile_steps) != 2:
raise ValueError(profile_steps_error_message)
self.start_step, self.stop_step = profile_steps
if self.start_step < 0 or self.start_step > self.stop_step:
raise ValueError(profile_steps_error_message)
self._step = 0
def before_run(self, run_context):
self._step += 1
if self._step == self.start_step:
tf.profiler.experimental.start(self.output_dir)
elif self._step == self.stop_step + 1:
tf.profiler.experimental.stop()
return SessionRunArgs({})
class TimeToTrainKerasHook(Callback):
def __init__(self, output_dir=None, summary_writer=None):
self.writer = summary_writer or summary_ops_v2.create_file_writer_v2(output_dir)
self.counters = defaultdict(int)
def _add_event(self, tag, step):
if self.writer is not None:
with self.writer.as_default(), summary_ops_v2.always_record_summaries():
summary_ops_v2.scalar(tag, 0, step=step)
def on_epoch_begin(self, epoch, logs=None):
self._add_event("ttt/train/epoch/begin", epoch)
def on_epoch_end(self, epoch, logs=None):
self._add_event("ttt/train/epoch/end", epoch)
def on_train_begin(self, logs=None):
self._add_event("ttt/train/begin", self.counters["train"])
def on_train_end(self, logs=None):
self._add_event("ttt/train/end", self.counters["train"])
self.counters["train"] += 1
def on_test_begin(self, logs=None):
self._add_event("ttt/eval/begin", self.counters["eval"])
def on_test_end(self, logs=None):
self._add_event("ttt/eval/end", self.counters["eval"])
self.counters["eval"] += 1
def on_predict_begin(self, logs=None):
self._add_event("ttt/predict/begin", self.counters["predict"])
def on_predict_end(self, logs=None):
self._add_event("ttt/predict/end", self.counters["predict"])
self.counters["predict"] += 1
class TimeToTrainEstimatorHook(tf.estimator.SessionRunHook):
def __init__(self, train_or_eval, output_dir):
assert train_or_eval in ("eval", "train")
self._summary_writer = None
self._output_dir = output_dir
self._tag = train_or_eval
self._counter = 0
def _add_event(self, tag, value):
summary = tf.compat.v1.Summary(
value=[
tf.compat.v1.Summary.Value(
tag=tag,
simple_value=0)
]
)
event = tf.compat.v1.Event(summary=summary)
event.wall_time = time.time()
event.step = self._counter
self._summary_writer.add_event(event)
def begin(self):
if self._summary_writer is None and self._output_dir:
self._summary_writer = SummaryWriterCache.get(self._output_dir)
self._add_event(f"ttt/{self._tag}/begin", self._counter)
def after_create_session(self, session, coord):
pass
def before_run(self, run_context):
pass
def after_run(self, run_context, run_values):
pass
def end(self, session):
self._add_event(f"ttt/{self._tag}/end", self._counter)
self._counter += 1 |