File size: 17,249 Bytes
14a7d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import os
import time
import tensorflow as tf
from copy import deepcopy
from collections import defaultdict
from tensorboard.plugins.hparams import api as hp
from tensorflow.python.eager import context
from tensorflow.keras import backend as K
from tensorflow.python.ops import summary_ops_v2
from tensorflow.python.summary import summary as tf_summary
from tensorflow.python.training.summary_io import SummaryWriterCache
from tensorflow.compat.v1.keras.callbacks import TensorBoard, Callback
from tensorflow.python.training.session_run_hook import SessionRunHook, SessionRunArgs


def _remove_prefix(s, prefix):
    if s.startswith(prefix):
        s = s[len(prefix):]
    return s


def _parse_precision(hparams: dict):
    # Check if 'hparams' contain data type.
    if 'dtype' in hparams or 'data_type' in hparams:
        param_name = 'dtype' if 'dtype' in hparams else 'data_type'
        return hparams[param_name]

    # Check if bf16 conversion flags are set.
    flag = os.environ.get('TF_BF16_CONVERSION', '0')
    flag = flag.lower()
    try:
        value = int(flag)
    except:
        value = -1

    if flag == 'false' or value == 0:
        return 'fp32'
    elif flag == 'true' or value == 1:
        return 'bf16'
    return flag


def _set_precision_if_missing(hparams: dict):
    if 'precision' not in hparams:
        hparams['precision'] = _parse_precision(hparams)
    return hparams


def _copy_and_clean_hparams(hparams: dict):
    hparams_ = dict()
    for name, value in hparams.items():
        if isinstance(value, (str, bool, int, float)):
            hparams_[name] = value
            continue

        try:
            hparams_[name] = str(value)
        except:
            tf.compat.v1.logging.info(
                f'Conversion of parameter "{name}" to string failed. '
                'Parameter will not be saved.')

    return hparams_


def write_hparams_v1(writer, hparams: dict):
    hparams = _copy_and_clean_hparams(hparams)
    hparams = _set_precision_if_missing(hparams)

    with tf.compat.v1.Graph().as_default():
        if isinstance(writer, str):
            writer = SummaryWriterCache.get(writer)
        summary = hp.hparams_pb(hparams).SerializeToString()
        writer.add_summary(summary)


def write_hparams_v2(writer, hparams: dict):
    hparams = _copy_and_clean_hparams(hparams)
    hparams = _set_precision_if_missing(hparams)

    with writer.as_default():
        hp.hparams(hparams)


class ExamplesPerSecondEstimatorHook(tf.compat.v1.train.StepCounterHook):
    """Calculate and report global_step/sec and examples/sec during runtime."""
    # Copy-pasted from tensorflow_estimator/python/estimator/tpu/tpu_estimator.py

    def __init__(self,
                 batch_size=None,
                 every_n_steps=1,
                 every_n_secs=None,
                 output_dir=None,
                 summary_writer=None,
                 extra_metrics=None,
                 log_global_step=False,
                 verbose=False,
                 tags_to_print=None):
        super().__init__(
            every_n_steps=every_n_steps,
            every_n_secs=every_n_secs,
            output_dir=output_dir,
            summary_writer=summary_writer)
        self._metrics = extra_metrics or {}
        self._verbose = verbose
        self._tags_to_print = tags_to_print
        if log_global_step:
            # Because estimator will log global_step/sec by default
            # when log_step_count_steps is not None saving it here
            # would duplicate events in TensorBoard.
            # Use log_global_step=True when RunConfig.log_step_count_step=None
            self._metrics['global_step/sec'] = 1
        if batch_size is not None:
            self._metrics['examples/sec'] = batch_size

    def _add_summary(self, tag, value, step):
        Summary = tf.compat.v1.Summary
        global_step_summary = Summary(value=[
            Summary.Value(tag=tag, simple_value=value)
        ])
        self._summary_writer.add_summary(global_step_summary, step)
        if (self._verbose or
            (self._tags_to_print is not None and tag in self._tags_to_print)):
            tf.compat.v1.logging.info(f'{tag}: {value}')

    def _log_and_record(self, elapsed_steps, elapsed_time, global_step):
        global_step_per_sec = elapsed_steps / elapsed_time
        if self._summary_writer is not None:
            for name, factor in self._metrics.items():
                value = factor * global_step_per_sec
                self._add_summary(name, value, global_step)

    def after_create_session(self, session, coord):
        self._timer.reset()


class ExamplesPerSecondKerasHookV1(Callback):
    def __init__(self,
                 every_n_steps=1,
                 every_n_secs=None,
                 output_dir=None,
                 summary_writer=None,
                 batch_size=None):
        self.writer = summary_writer or SummaryWriterCache.get(output_dir)
        self._timer = tf.compat.v1.train.SecondOrStepTimer(
            every_n_secs, every_n_steps)
        self._global_step = 0
        self._total_examples = 0
        self._should_trigger = True
        self._batch_size = batch_size

    def on_train_begin(self, logs=None):
        self._timer.reset()

    def on_train_batch_begin(self, batch, logs=None):
        # batch is index within current epoch, if we want to dump data through all epochs then we need to use global_step
        self._should_trigger = self._timer.should_trigger_for_step(self._global_step)

    def on_predict_batch_end(self, batch, logs=None):
        self._global_step += 1

    def on_train_batch_end(self, batch, logs=None):
        step = self._global_step
        self._total_examples += logs.get('size', 0)
        if self._should_trigger:
            elapsed_time, elapsed_steps = self._timer.update_last_triggered_step(
                step)
            if elapsed_time is not None:
                total_examples = self._total_examples
                if self._batch_size is not None:
                    total_examples = self._batch_size * elapsed_steps
                self._log_and_record(
                    elapsed_steps, elapsed_time, step, total_examples)
                self._total_examples = 0
        self._global_step += 1

    def _log_and_record(self, elapsed_steps, elapsed_time,
                        global_step, total_examples=None):
        Summary = tf.compat.v1.Summary
        global_step_per_sec = elapsed_steps / elapsed_time
        if self.writer is not None:
            global_step_summary = Summary(value=[
                Summary.Value(
                    tag='global_step/sec', simple_value=global_step_per_sec)
            ])
            self.writer.add_summary(global_step_summary, global_step)
            if total_examples is not None:
                examples_per_sec = total_examples / elapsed_time
                example_summary = Summary(value=[
                    Summary.Value(tag='examples/sec',
                                  simple_value=examples_per_sec)
                ])
                self.writer.add_summary(example_summary, global_step)


class ExamplesPerSecondKerasHookV2(ExamplesPerSecondKerasHookV1):
    def __init__(self,
                 every_n_steps=1,
                 every_n_secs=None,
                 output_dir=None,
                 summary_writer=None,
                 batch_size=None):
        writer = summary_writer or summary_ops_v2.create_file_writer_v2(output_dir)
        super().__init__(every_n_steps, every_n_secs, output_dir, writer, batch_size)

    def _log_and_record(self, elapsed_steps, elapsed_time,
                        global_step, total_examples=None):
        global_step_per_sec = elapsed_steps / elapsed_time
        if self.writer is not None:
            with self.writer.as_default(), summary_ops_v2.always_record_summaries():
                summary_ops_v2.scalar('global_step/sec', global_step_per_sec,
                                      step=global_step)
                if total_examples is not None:
                    examples_per_sec = total_examples / elapsed_time
                    summary_ops_v2.scalar('examples/sec', examples_per_sec,
                                          step=global_step)


ExamplesPerSecondKerasHook = ExamplesPerSecondKerasHookV1


class TBSummary(object):
    """
    Creates a proxy for FileWriter for TensorBoard.

    :param log_dir: - path where experiment is running (usually the same as
        model_dir in Estimator)
    """

    def __init__(self, log_dir: str):
        super().__init__()
        self._log_dir = log_dir

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass

    def add_scalar(self, tag, value, global_step=None):
        with tf.compat.v1.Graph().as_default():
            writer = SummaryWriterCache.get(self._log_dir)
            summary = tf.compat.v1.Summary(
                value=[tf.compat.v1.Summary.Value(tag=tag, simple_value=value)])
            event = tf.compat.v1.Event(summary=summary)
            event.wall_time = time.time()
            event.step = global_step
            writer.add_event(event)


class TensorBoardWithHParamsV1(TensorBoard):
    """
    Adds TensorBoard visualization to training process.

    Writes training tfevent file into default log directory, but
    stores evaluation in log_dir/eval subdirectory.
    """

    def __init__(self, hparams, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.hparams = hparams
        self._train_summary = None
        self._eval_summary = None

    def _switch_writer(self, mode):
        self.writer = self._train_summary if mode == 'train' else self._eval_summary

    def _init_writer(self, model):
        """Sets file writer."""
        if context.executing_eagerly():
            raise NotImplementedError('hook does not support eager execution')

        self._train_summary = SummaryWriterCache.get(self.log_dir)
        self._eval_summary = SummaryWriterCache.get(
            os.path.join(self.log_dir, 'eval'))
        self._switch_writer('train')

        write_hparams_v1(self.writer, self.hparams)

    def _write_custom_summaries(self, step, logs=None):
        """
        This methods works on the assumption that metrics containing `val`
        in name are related to validation (that's the default in Keras).
        """

        logs = logs or {}
        train_logs = {}
        eval_logs = {}

        for name, value in logs.items():
            if 'val' in name:
                if name.startswith('batch_val_'):
                    name = 'batch_' + _remove_prefix(name, 'batch_val_')
                elif name.startswith('epoch_val_'):
                    name = _remove_prefix(name, 'epoch_val_')
                eval_logs[name] = value
            else:
                if name.startswith('batch_'):
                    name = _remove_prefix(name, 'batch_')
                train_logs[name] = value

        self._switch_writer('eval')
        super()._write_custom_summaries(step, eval_logs)
        self._switch_writer('train')
        super()._write_custom_summaries(step, train_logs)


class TensorBoardWithHParamsV2(TensorBoard):
    """
    Adds TensorBoard visualization to training process.

    Writes training tfevent file into default log directory, but
    stores evaluation in log_dir/eval subdirectory.
    """

    def __init__(self, hparams, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.hparams = hparams

    def set_model(self, model):
        """Sets Keras model and writes graph if specified."""
        self.model = model
        self._log_write_dir = self._get_log_write_dir()

        self._train_dir = self._log_write_dir
        self._train_step = self.model._train_counter  # pylint: disable=protected-access

        self._val_dir = os.path.join(self._log_write_dir, 'eval')
        self._val_step = self.model._test_counter  # pylint: disable=protected-access

        self._writers = {}  # Resets writers.

        self._should_write_train_graph = False
        if self.write_graph:
            self._write_keras_model_summary()
            self._should_write_train_graph = True
        if self.embeddings_freq:
            self._configure_embeddings()

        write_hparams_v2(self._train_writer, self.hparams)

    def _log_epoch_metrics(self, epoch, logs):
        """Writes epoch metrics out as scalar summaries.

        Arguments:
            epoch: Int. The global step to use for TensorBoard.
            logs: Dict. Keys are scalar summary names, values are scalars.
        """
        if not logs:
            return

        train_logs = {k: v for k,
                      v in logs.items() if not k.startswith('val_')}
        val_logs = {k: v for k, v in logs.items() if k.startswith('val_')}
        train_logs = self._collect_learning_rate(train_logs)

        with summary_ops_v2.always_record_summaries():
            if train_logs:
                with self._train_writer.as_default():
                    for name, value in train_logs.items():
                        summary_ops_v2.scalar(name, value, step=epoch)
            if val_logs:
                with self._val_writer.as_default():
                    for name, value in val_logs.items():
                        name = name[4:]  # Remove 'val_' prefix.
                        summary_ops_v2.scalar(name, value, step=epoch)

class TensorBoardHook(SessionRunHook):
    def __init__(self,
                output_dir="",
                profile_steps=""
                ):
        self.output_dir = output_dir
        profile_steps_error_message = (
        'profile_steps must be a comma separated pair of positive integers, '
        'specifying the first and last steps to be profiled.'
        )
        try:
            profile_steps = [int(i) for i in profile_steps.split(',')]
        except ValueError:
            raise ValueError(profile_steps_error_message)
        if len(profile_steps) != 2:
            raise ValueError(profile_steps_error_message)
        self.start_step, self.stop_step = profile_steps
        if self.start_step < 0 or self.start_step > self.stop_step:
            raise ValueError(profile_steps_error_message)
        self._step = 0

    def before_run(self, run_context):
        self._step += 1
        if self._step == self.start_step:
            tf.profiler.experimental.start(self.output_dir)
        elif self._step == self.stop_step + 1:
            tf.profiler.experimental.stop()

        return SessionRunArgs({})


class TimeToTrainKerasHook(Callback):
    def __init__(self, output_dir=None, summary_writer=None):
        self.writer = summary_writer or summary_ops_v2.create_file_writer_v2(output_dir)
        self.counters = defaultdict(int)

    def _add_event(self, tag, step):
        if self.writer is not None:
            with self.writer.as_default(), summary_ops_v2.always_record_summaries():
                summary_ops_v2.scalar(tag, 0, step=step)

    def on_epoch_begin(self, epoch, logs=None):
        self._add_event("ttt/train/epoch/begin", epoch)

    def on_epoch_end(self, epoch, logs=None):
        self._add_event("ttt/train/epoch/end", epoch)

    def on_train_begin(self, logs=None):
        self._add_event("ttt/train/begin", self.counters["train"])

    def on_train_end(self, logs=None):
        self._add_event("ttt/train/end", self.counters["train"])
        self.counters["train"] += 1

    def on_test_begin(self, logs=None):
        self._add_event("ttt/eval/begin", self.counters["eval"])

    def on_test_end(self, logs=None):
        self._add_event("ttt/eval/end", self.counters["eval"])
        self.counters["eval"] += 1

    def on_predict_begin(self, logs=None):
        self._add_event("ttt/predict/begin", self.counters["predict"])

    def on_predict_end(self, logs=None):
        self._add_event("ttt/predict/end", self.counters["predict"])
        self.counters["predict"] += 1


class TimeToTrainEstimatorHook(tf.estimator.SessionRunHook):
    def __init__(self, train_or_eval, output_dir):
        assert train_or_eval in ("eval", "train")
        self._summary_writer = None
        self._output_dir = output_dir
        self._tag = train_or_eval
        self._counter = 0

    def _add_event(self, tag, value):
        summary = tf.compat.v1.Summary(
            value=[
                tf.compat.v1.Summary.Value(
                    tag=tag,
                    simple_value=0)
            ]
        )
        event = tf.compat.v1.Event(summary=summary)
        event.wall_time = time.time()
        event.step = self._counter
        self._summary_writer.add_event(event)

    def begin(self):
        if self._summary_writer is None and self._output_dir:
            self._summary_writer = SummaryWriterCache.get(self._output_dir)
        self._add_event(f"ttt/{self._tag}/begin", self._counter)

    def after_create_session(self, session, coord):
        pass

    def before_run(self, run_context):
        pass

    def after_run(self, run_context, run_values):
        pass

    def end(self, session):
        self._add_event(f"ttt/{self._tag}/end", self._counter)
        self._counter += 1