File size: 9,760 Bytes
699d4cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
###############################################################################
# Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
###############################################################################
# List of changes:
# - Added evaluation from saved chekpoint via --evaluate_checkpoint_path flag
# - Added resuming from checkpoint via --resume_from_checkpoint_path and --resume_from_epoch  flags
# - Added seed via --seed flag
# - Added densent general configuration to support densent121, densenet161, densenet169 via --model flag
# - Added warmup epochs via --warmup_epochs flag
# - Added support for HPU training with --run_on_hpu flag
# - Added HPUStrategy() distributed training with --use_hpu_strategy
# - Added steps-based training duration specification via --steps_per_epoch and --validation_steps flags
# - Added StepLearningRateScheduleWithWarmup learning rate scheduler for warmup
# - Added deterministic mode

import tensorflow as tf

from utils.dataset import get_dataset
from utils.arguments import DenseNetArgumentParser
from utils.misc import distribution_utils
from models.models import StepLearningRateScheduleWithWarmup
from models.models import get_optimizer
from config import config
from densenet import densenet_model

from TensorFlow.common.debug import dump_callback
from habana_frameworks.tensorflow import load_habana_module
from habana_frameworks.tensorflow.multinode_helpers import comm_size, comm_rank
from habana_frameworks.tensorflow.distribute import HPUStrategy
from TensorFlow.common.tb_utils import (
    TensorBoardWithHParamsV2, ExamplesPerSecondKerasHookV2, TimeToTrainKerasHook)

import os
import random
import numpy as np

def set_deterministic():
    os.environ['TF_DETERMINISTIC_OPS'] = '1'
    np.random.seed(0)
    random.seed(0)
    tf.random.set_seed(0)

def main():
    parser = DenseNetArgumentParser(
        description=(
            "train.py is the main training/evaluation script for DenseNet. "
            "In order to run training on multiple Gaudi cards, run "
            "train.py with mpirun."))
    args, _ = parser.parse_known_args()

    strategy = None
    verbose = 2

    if args.deterministic:
        if args.inputs is None:
            raise ValueError("Must provide inputs for deterministic mode")
        if args.resume_from_checkpoint_path is None:
            raise ValueError("Must provide checkpoint for deterministic mode")

    if args.dtype == 'bf16':
        os.environ['TF_BF16_CONVERSION'] = '1'

    if args.run_on_hpu:
        load_habana_module()
        if args.use_hpu_strategy:
            hls_addresses = str(os.environ.get(
                "MULTI_HLS_IPS", "127.0.0.1")).split(",")
            TF_BASE_PORT = 2410
            mpi_rank = comm_rank()
            mpi_size = comm_size()
            if mpi_rank > 0:
                verbose = 0
            worker_hosts = ",".join([",".join([address + ':' + str(TF_BASE_PORT + rank)
                                       for rank in range(mpi_size//len(hls_addresses))])
                            for address in hls_addresses])
            task_index = mpi_rank

            # Configures cluster spec for distribution strategy.
            _ = distribution_utils.configure_cluster(worker_hosts, task_index)
            strategy = HPUStrategy()
            print('Number of devices: {}'.format(
                strategy.num_replicas_in_sync))
    else:
        strategy = tf.distribute.MultiWorkerMirroredStrategy()
        print('Number of devices: {}'.format(strategy.num_replicas_in_sync))

    if args.seed is not None:
        os.environ['TF_DETERMINISTIC_OPS'] = '1'
        random.seed(args.seed)
        np.random.seed(args.seed)
        tf.random.set_seed(args.seed)

    img_rows, img_cols = 224, 224  # Resolution of inputs
    channel = 3
    num_classes = 1000
    batch_size = args.batch_size
    nb_epoch = args.epochs
    dataset_dir = args.dataset_dir
    resume_from_checkpoint_path = args.resume_from_checkpoint_path
    resume_from_epoch = args.resume_from_epoch
    dropout_rate = args.dropout_rate
    weight_decay = args.weight_decay
    optim_name = args.optimizer
    initial_lr = args.initial_lr
    model_name = args.model
    save_summary_steps = args.save_summary_steps

    if model_name == "densenet121":
        growth_rate = 32
        nb_filter = 64
        nb_layers = [6, 12, 24, 16]

    elif model_name == "densenet161":
        growth_rate = 48
        nb_filter = 96
        nb_layers = [6, 12, 36, 24]

    elif model_name == "densenet169":
        growth_rate = 32
        nb_filter = 64
        nb_layers = [6, 12, 32, 32]

    else:
        print("model is not supported")
        exit(1)

    # Load our model
    if strategy:
        with strategy.scope():
            model = densenet_model(img_rows=img_rows, img_cols=img_cols, color_type=channel,
                                   dropout_rate=dropout_rate, weight_decay=weight_decay, num_classes=num_classes,
                                   growth_rate=growth_rate, nb_filter=nb_filter, nb_layers=nb_layers)
            optimizer = get_optimizer(
                model_name, optim_name, initial_lr, epsilon=1e-2)
            model.compile(optimizer=optimizer,
                          loss='categorical_crossentropy', metrics=['accuracy'])
    else:
        model = densenet_model(img_rows=img_rows, img_cols=img_cols, color_type=channel,
                               dropout_rate=dropout_rate, weight_decay=weight_decay, num_classes=num_classes,
                               growth_rate=growth_rate, nb_filter=nb_filter, nb_layers=nb_layers)
        optimizer = get_optimizer(
            model_name, optim_name, initial_lr, epsilon=1e-2)
        model.compile(optimizer=optimizer,
                      loss='categorical_crossentropy', metrics=['accuracy'])

    # Start training
    steps_per_epoch = 1281167 // batch_size
    if args.steps_per_epoch is not None:
        steps_per_epoch = args.steps_per_epoch
    validation_steps = 50000 // batch_size
    if args.validation_steps is not None:
        validation_steps = args.validation_steps
    warmup_steps = args.warmup_epochs * steps_per_epoch
    lr_sched = {0: 1, 30: 0.1, 60: 0.01, 80: 0.001}
    lr_sched_steps = {
        epoch * steps_per_epoch: multiplier for (epoch, multiplier) in lr_sched.items()}
    init_step=steps_per_epoch * resume_from_epoch if resume_from_epoch is not None else 0

    lrate = StepLearningRateScheduleWithWarmup(initial_lr=initial_lr,
                                               initial_global_step=init_step,
                                               warmup_steps=warmup_steps,
                                               decay_schedule=lr_sched_steps,
                                               verbose=0)

    save_name = model_name if not model_name.endswith('.h5') else \
        os.path.split(model_name)[-1].split('.')[0].split('-')[0]

    model_ckpt = tf.keras.callbacks.ModelCheckpoint(
        os.path.join(args.model_dir, config.SAVE_DIR,
                     save_name) + '-ckpt-{epoch:03d}.h5',
        monitor='train_loss')

    log_dir = os.path.join(args.model_dir, config.LOG_DIR)
    ttt = TimeToTrainKerasHook(output_dir=log_dir)

    callbacks = [lrate, model_ckpt, ttt]

    if save_summary_steps is not None and save_summary_steps > 0:
        local_batch_size = batch_size

        if args.use_hpu_strategy:
            log_dir = os.path.join(log_dir, 'worker_' + str(comm_rank()))
            local_batch_size = batch_size // strategy.num_replicas_in_sync

        callbacks += [
            TensorBoardWithHParamsV2(
                args.__dict__, log_dir=log_dir,
                update_freq=save_summary_steps, profile_batch=0),
            ExamplesPerSecondKerasHookV2(
                save_summary_steps, output_dir=log_dir,
                batch_size=local_batch_size),
        ]

    if (args.evaluate_checkpoint_path is not None):
        model.load_weights(args.evaluate_checkpoint_path)
        results = model.evaluate(x=ds_valid, steps=validation_steps)
        print("Test loss, Test acc:", results)
        exit()

    if ((resume_from_epoch is not None) and (resume_from_checkpoint_path is not None)):
        model.load_weights(resume_from_checkpoint_path)

    if args.deterministic:
        set_deterministic()
        if not os.path.isfile(args.dump_config):
            raise FileNotFoundError("wrong dump config path")

        import pickle
        x_path = os.path.join(args.inputs, "input")
        y_path = os.path.join(args.inputs, "target")
        x = pickle.load(open(x_path, 'rb'))
        y = pickle.load(open(y_path, 'rb'))

        with dump_callback(args.dump_config):
          model.fit(x=x, y=y,
                  steps_per_epoch=steps_per_epoch,
                  callbacks=callbacks,
                  initial_epoch=resume_from_epoch,
                  epochs=nb_epoch,
                  shuffle=False,
                  verbose=verbose,
                  validation_data=None,
                  validation_steps=0,
                  )
    else:
      ds_train = get_dataset(dataset_dir, args.train_subset, batch_size, args.dataset_num_parallel_calls)
      ds_valid = get_dataset(dataset_dir, args.val_subset, batch_size, args.dataset_num_parallel_calls)

      model.fit(x=ds_train, y=None,
                steps_per_epoch=steps_per_epoch,
                callbacks=callbacks,
                initial_epoch=resume_from_epoch,
                epochs=nb_epoch,
                shuffle=True,
                verbose=verbose,
                validation_data=(ds_valid, None),
                validation_steps=validation_steps,
                validation_freq=1,
                )

if __name__ == '__main__':
    main()