File size: 44,134 Bytes
f653bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
# coding=utf-8
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

###############################################################################
# Copyright (C) 2020-2022 Habana Labs, Ltd. an Intel Company
#
# Changes:
# - Added default values for environment variables:
#   - TF_DISABLE_MKL
#   - TF_BF16_CONVERSION
#   - TF_PRELIMINARY_CLUSTER_SIZE
#   - TF_DISABLE_SCOPED_ALLOCATOR
#   - FORCE_WEIGHT_SYNC
# - Added support for packed dataset
# - Added support for HPU profiling (command-line flag - `profile`).
# - Added line tf.get_logger().propagate = False
# - Added functionality for reading value for the flag --avg_seq_per_sample
#   from packed dataset metadata file created with pack_pretraining_data_tfrec.py script.
# - Added option to save full pretrained model by using --export_dir flag
# - Added keep_checkpoint_max flag
###############################################################################

"""Run masked LM/next sentence masked_lm pre-training for BERT."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import os
import random
import sys
import time
import TensorFlow.nlp.bert.modeling as modeling
import TensorFlow.nlp.bert.optimization as optimization
import tensorflow as tf
import glob
import json
from TensorFlow.nlp.bert.utils.utils import LogEvalRunHook
import TensorFlow.nlp.bert.utils.dllogger_class as dllogger_class
from dllogger import Verbosity

from tensorflow.core.protobuf import rewriter_config_pb2

from TensorFlow.common.tb_utils import ExamplesPerSecondEstimatorHook, write_hparams_v1, TensorBoardHook
from habana_frameworks.tensorflow.multinode_helpers import comm_local_rank
from TensorFlow.common.debug import dump_callback
from TensorFlow.nlp.bert.data_preprocessing.pack_pretraining_data_tfrec import get_metadata_file_path

try:
    import horovod.tensorflow as hvd
except ImportError:
    hvd = None

def horovod_enabled():
  return hvd is not None and hvd.is_initialized()

tf.get_logger().propagate = False

curr_path = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(curr_path, '..', '..'))

from habana_frameworks.tensorflow import load_habana_module

flags = tf.compat.v1.flags

FLAGS = flags.FLAGS

from tensorflow.python.framework.tensor import Tensor
from typing import Union

def init_flags():
  ## Required parameters
  flags.DEFINE_string(
      "bert_config_file", None,
      "The config json file corresponding to the pre-trained BERT model. "
      "This specifies the model architecture.")

  flags.DEFINE_string(
      "input_files_dir", None,
      "Directory with input files, comma separated or single directory.")

  flags.DEFINE_string(
      "eval_files_dir", None,
      "Directory with eval files, comma separated or single directory. ")

  flags.DEFINE_string(
      "output_dir", None,
      "The output directory where the model checkpoints will be written.")

  ## Other parameters
  flags.DEFINE_string(
      "dllog_path", "/results/bert_dllog.json",
      "filename where dllogger writes to")

  flags.DEFINE_string(
      "init_checkpoint", None,
      "Initial checkpoint (usually from a pre-trained BERT model).")

  flags.DEFINE_string(
    "export_dir", None,
    "Directory to save full trained model")

  flags.DEFINE_string(
      "optimizer_type", "lamb",
      "Optimizer used for training - LAMB or ADAM")

  flags.DEFINE_integer(
      "max_seq_length", 512,
      "The maximum total input sequence length after WordPiece tokenization. "
      "Sequences longer than this will be truncated, and sequences shorter "
      "than this will be padded. Must match data generation.")

  flags.DEFINE_integer(
      "max_predictions_per_seq", 80,
      "Maximum number of masked LM predictions per sequence. "
      "Must match data generation.")

  flags.DEFINE_bool("do_train", False, "Whether to run training.")

  flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")

  flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")

  flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")

  flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")

  flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")

  flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")

  flags.DEFINE_integer("save_checkpoints_steps", 1000,
                      "How often to save the model checkpoint.")

  flags.DEFINE_integer("save_summary_steps", 1,
                       "How often to save the summary data.")

  flags.DEFINE_integer("display_loss_steps", 10,
                      "How often to print loss")

  flags.DEFINE_integer("iterations_per_loop", 1000,
                      "How many steps to make in each estimator call.")

  flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")

  flags.DEFINE_integer("num_accumulation_steps", 1,
                      "Number of accumulation steps before gradient update."
                        "Global batch size = num_accumulation_steps * train_batch_size")

  flags.DEFINE_bool("allreduce_post_accumulation", False, "Whether to all reduce after accumulation of N steps or after each step")

  flags.DEFINE_bool(
      "verbose_logging", False,
      "If true, all of the trainable parameters are printed")

  flags.DEFINE_bool("horovod", False, "Whether to use Horovod for multi-gpu runs")

  flags.DEFINE_bool("report_loss", True, "Whether to report total loss during training.")

  flags.DEFINE_bool("manual_fp16", False, "Whether to use fp32 or fp16 arithmetic on GPU. "
                                          "Manual casting is done instead of using AMP")

  flags.DEFINE_bool("amp", True, "Whether to enable AMP ops. When false, uses TF32 on A100 and FP32 on V100 GPUS.")
  flags.DEFINE_bool("use_xla", True, "Whether to enable XLA JIT compilation.")
  flags.DEFINE_integer("init_loss_scale", 2**32, "Initial value of loss scale if mixed precision training")
  flags.DEFINE_bool("deterministic_run", False, "If set run will be deterministic (set random seed, read dataset in single thread, disable dropout)")
  flags.DEFINE_string("bf16_config_path", None, "Defines config for tensor converson to bf16 data type")
  flags.DEFINE_bool('enable_scoped_allocator', False, "Enable scoped allocator optimization")
  flags.DEFINE_bool("resume", False, "Whether to resume training from init_checkpoint. "
                                                      "If enabled, global vars would be set from init_checkpoint.")
  flags.DEFINE_string("profile", "", "Profile Steps range X-Y (e.g. --profile 7,10)")
  flags.DEFINE_integer("keep_checkpoint_max", 2, "The maximum number of recent checkpoint files to keep.")

def set_random_seed(seed):
  tf.compat.v1.set_random_seed(seed)
  tf.random.set_seed(seed)
  random.seed(seed)
  np.random.seed(seed)

# report samples/sec, total loss and learning rate during training
class _LogSessionRunHook(tf.estimator.SessionRunHook):
  def __init__(self, global_batch_size, num_accumulation_steps, dllogging, display_every=10,
               save_ckpt_steps=1000, report_loss=True, hvd_rank=-1):
    self.global_batch_size = global_batch_size
    self.display_every = display_every
    self.save_ckpt_steps = save_ckpt_steps
    self.hvd_rank = hvd_rank
    self.num_accumulation_steps = num_accumulation_steps
    self.dllogging = dllogging
    self.report_loss = report_loss
    self.skip_iters = 6

  def after_create_session(self, session, coord):
    self.elapsed_secs = 0.0 #elapsed seconds between every print
    self.count = 0 # number of global steps between every print
    self.all_count = 0 #number of steps (including accumulation) between every print
    self.loss = 0.0 # accumulation of loss in each step between every print

    self.total_time = 0.0 # total time taken to train (excluding warmup + ckpt saving steps)
    self.step_time = 0.0 # time taken per step
    self.init_global_step = session.run(tf.compat.v1.train.get_global_step()) # training starts at init_global_step
    self.skipped = 0

  def before_run(self, run_context):
    if horovod_enabled() and hvd.rank() != 0:
      return
    self.t0 = time.time()
    if self.num_accumulation_steps <= 1:
        if FLAGS.manual_fp16 or FLAGS.amp:
            return tf.estimator.SessionRunArgs(
                fetches=['step_update:0', 'total_loss:0',
                         'learning_rate:0', 'nsp_loss:0',
                         'mlm_loss:0', 'loss_scale:0'])
        else:
            return tf.estimator.SessionRunArgs(
                fetches=['step_update:0', 'total_loss:0',
                         'learning_rate:0', 'nsp_loss:0',
                         'mlm_loss:0'])
    else:
        if FLAGS.manual_fp16 or FLAGS.amp:
            return tf.estimator.SessionRunArgs(
                fetches=['step_update:0', 'update_step:0', 'total_loss:0',
                         'learning_rate:0', 'nsp_loss:0',
                         'mlm_loss:0', 'loss_scale:0'])
        else:
          return tf.estimator.SessionRunArgs(
              fetches=['step_update:0', 'update_step:0', 'total_loss:0',
                       'learning_rate:0', 'nsp_loss:0',
                       'mlm_loss:0'])

  def after_run(self, run_context, run_values):
    if horovod_enabled() and hvd.rank() != 0:
      return
    run_time = time.time() - self.t0

    if self.num_accumulation_steps <=1:
        if FLAGS.manual_fp16 or FLAGS.amp:
            self.global_step, total_loss, lr, nsp_loss, mlm_loss, loss_scaler = run_values.results
        else:
            self.global_step, total_loss, lr, nsp_loss, mlm_loss = run_values. \
                results
        update_step = True
    else:
        if FLAGS.manual_fp16 or FLAGS.amp:
          self.global_step, update_step, total_loss, lr, nsp_loss, mlm_loss, loss_scaler = run_values.results
        else:
          self.global_step, update_step, total_loss, lr, nsp_loss, mlm_loss = run_values.\
              results

    self.elapsed_secs += run_time
    self.step_time += run_time

    print_step = self.global_step + 1 # One-based index for printing.
    self.loss += total_loss
    self.all_count += 1
    if update_step:

        self.count += 1

        # Removing first six steps after every checkpoint save from timing
        if (self.global_step - self.init_global_step) % self.save_ckpt_steps < self.skip_iters:
          print("Skipping time record for ", self.global_step, " due to checkpoint-saving/warmup overhead")
          self.skipped += 1
        else:
          self.total_time += self.step_time

        self.step_time = 0.0 #Reset Step Time

        if (print_step == 1 or print_step % self.display_every == 0):
            dt = self.elapsed_secs / self.count
            sent_per_sec = self.global_batch_size / dt
            avg_loss_step = self.loss / self.all_count
            if self.hvd_rank >= 0 and FLAGS.report_loss:
              if FLAGS.manual_fp16 or FLAGS.amp:
                self.dllogging.logger.log(step=(print_step),
                                     data={"Rank": int(self.hvd_rank), "throughput_train": float(sent_per_sec),
                                           "mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss),
                                           "total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step),
                                           "learning_rate": str(lr), "loss_scaler":int(loss_scaler)},
                                     verbosity=Verbosity.DEFAULT)
              else:
                self.dllogging.logger.log(step=int(print_step),
                                     data={"Rank": int(self.hvd_rank), "throughput_train": float(sent_per_sec),
                                           "mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss),
                                           "total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step),
                                           "learning_rate": str(lr)},
                                     verbosity=Verbosity.DEFAULT)
            else:
              if FLAGS.manual_fp16 or FLAGS.amp:
                self.dllogging.logger.log(step=int(print_step),
                                     data={"throughput_train": float(sent_per_sec),
                                           "mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss),
                                           "total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step),
                                           "learning_rate": str(lr), "loss_scaler":int(loss_scaler)},
                                     verbosity=Verbosity.DEFAULT)
              else:
                self.dllogging.logger.log(step=int(print_step),
                                     data={"throughput_train": float(sent_per_sec),
                                           "mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss),
                                           "total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step),
                                           "learning_rate": str(lr)},
                                     verbosity=Verbosity.DEFAULT)

            self.elapsed_secs = 0.0
            self.count = 0
            self.loss = 0.0
            self.all_count = 0

def model_fn_builder(bert_config, init_checkpoint, learning_rate,
                     num_train_steps, num_warmup_steps,
                     use_one_hot_embeddings, enable_packed_data_mode):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.compat.v1.logging.info("*** Features ***")
    for name in sorted(features.keys()):
      tf.compat.v1.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    masked_lm_positions = features["masked_lm_positions"]
    masked_lm_ids = features["masked_lm_ids"]
    masked_lm_weights = features["masked_lm_weights"]
    next_sentence_labels = features["next_sentence_labels"]

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    positions = None
    next_sentence_positions = None
    next_sentence_weights = None
    if enable_packed_data_mode and is_training:  # only training should work in packed mode
      positions = features["positions"]
      next_sentence_positions = features["next_sentence_positions"]
      next_sentence_weights = features["next_sentence_weights"]

    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings,
        compute_type=tf.float16 if FLAGS.manual_fp16 else tf.float32,
        enable_packed_data_mode=enable_packed_data_mode,
        positions=positions,
        next_sentence_positions=next_sentence_positions)

    (masked_lm_loss,
     masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
         bert_config, model.get_sequence_output(), model.get_embedding_table(),
         masked_lm_positions, masked_lm_ids,
         masked_lm_weights,
         enable_packed_data_mode=enable_packed_data_mode,
         is_training=is_training)

    (next_sentence_loss, next_sentence_example_loss,
     next_sentence_log_probs) = get_next_sentence_output(
         bert_config, model.get_pooled_output(), next_sentence_labels,
         enable_packed_data_mode=enable_packed_data_mode,
         is_training=is_training,
         weights=next_sentence_weights)

    masked_lm_loss = tf.identity(masked_lm_loss, name="mlm_loss")
    next_sentence_loss = tf.identity(next_sentence_loss, name="nsp_loss")
    total_loss = masked_lm_loss + next_sentence_loss
    total_loss = tf.identity(total_loss, name='total_loss')

    tvars = tf.compat.v1.trainable_variables()
    if FLAGS.resume:
      tvars += tf.compat.v1.global_variables()

    initialized_variable_names = {}

    if init_checkpoint:
      (assignment_map, initialized_variable_names
      ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)

      tf.compat.v1.train.init_from_checkpoint(init_checkpoint, assignment_map)

    if FLAGS.verbose_logging:
        tf.compat.v1.logging.info("**** Trainable Variables ****")
        for var in tvars:
          init_string = ""
          if var.name in initialized_variable_names:
            init_string = ", *INIT_FROM_CKPT*"
          tf.compat.v1.logging.info("  %d :: name = %s, shape = %s%s", hvd.rank() if horovod_enabled() else 0, var.name, var.shape,
                          init_string)

    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:
      train_op = optimization.create_optimizer(
          total_loss, learning_rate, num_train_steps, num_warmup_steps,
          FLAGS.manual_fp16, FLAGS.amp, FLAGS.num_accumulation_steps, FLAGS.optimizer_type, FLAGS.allreduce_post_accumulation, FLAGS.init_loss_scale)

      output_spec = tf.estimator.EstimatorSpec(
          mode=mode,
          loss=total_loss,
          train_op=train_op)
    elif mode == tf.estimator.ModeKeys.EVAL:

      def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
                    masked_lm_weights, next_sentence_example_loss,
                    next_sentence_log_probs, next_sentence_labels):
        """Computes the loss and accuracy of the model."""
        masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
                                         [-1, masked_lm_log_probs.shape[-1]])
        masked_lm_predictions = tf.argmax(
            input=masked_lm_log_probs, axis=-1, output_type=tf.int32)
        masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
        masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
        masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
        masked_lm_accuracy = tf.compat.v1.metrics.accuracy(
            labels=masked_lm_ids,
            predictions=masked_lm_predictions,
            weights=masked_lm_weights)
        masked_lm_mean_loss = tf.compat.v1.metrics.mean(
            values=masked_lm_example_loss, weights=masked_lm_weights)

        next_sentence_log_probs = tf.reshape(
            next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
        next_sentence_predictions = tf.argmax(
            input=next_sentence_log_probs, axis=-1, output_type=tf.int32)
        next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
        next_sentence_accuracy = tf.compat.v1.metrics.accuracy(
            labels=next_sentence_labels, predictions=next_sentence_predictions)
        next_sentence_mean_loss = tf.compat.v1.metrics.mean(
            values=next_sentence_example_loss)

        return {
            "masked_lm_accuracy": masked_lm_accuracy,
            "masked_lm_loss": masked_lm_mean_loss,
            "next_sentence_accuracy": next_sentence_accuracy,
            "next_sentence_loss": next_sentence_mean_loss,
        }

      eval_metric_ops = metric_fn(
          masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
          masked_lm_weights, next_sentence_example_loss,
          next_sentence_log_probs, next_sentence_labels
      )
      output_spec = tf.estimator.EstimatorSpec(
          mode=mode,
          loss=total_loss,
          eval_metric_ops=eval_metric_ops)
    else:
      raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))

    return output_spec

  return model_fn


def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
                         label_ids, label_weights,
                         enable_packed_data_mode: bool = False,
                         is_training: bool = False):
  """Get loss and log probs for the masked LM."""
  input_tensor = modeling.gather_indexes(input_tensor, positions)

  with tf.compat.v1.variable_scope("cls/predictions"):
    # We apply one more non-linear transformation before the output layer.
    # This matrix is not used after pre-training.
    with tf.compat.v1.variable_scope("transform"):
      input_tensor = tf.compat.v1.layers.dense(
          input_tensor,
          units=bert_config.hidden_size,
          activation=modeling.get_activation(bert_config.hidden_act),
          kernel_initializer=modeling.create_initializer(
              bert_config.initializer_range))
      input_tensor = modeling.layer_norm(input_tensor)

    # The output weights are the same as the input embeddings, but there is
    # an output-only bias for each token.
    output_bias = tf.compat.v1.get_variable(
        "output_bias",
        shape=[bert_config.vocab_size],
        initializer=tf.compat.v1.zeros_initializer())
    logits = tf.matmul(tf.cast(input_tensor, tf.float32), output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    log_probs = tf.nn.log_softmax(logits - tf.reduce_max(logits, keepdims=True, axis=-1), axis=-1)

    label_ids = tf.reshape(label_ids, [-1])
    label_weights = tf.reshape(label_weights, [-1])

    one_hot_labels = tf.one_hot(
        label_ids, depth=bert_config.vocab_size, dtype=tf.float32)

    # The `positions` tensor might be zero-padded (if the sequence is too
    # short to have the maximum number of predictions). The `label_weights`
    # tensor has a value of 1.0 for every real prediction and 0.0 for the
    # padding predictions.
    per_example_loss = -tf.reduce_sum(input_tensor=log_probs * one_hot_labels, axis=[-1])
    if enable_packed_data_mode and is_training:  # only training should work in packed mode
      label_weights = tf.cast(label_weights > 0, dtype=tf.float32)
    numerator = tf.reduce_sum(input_tensor=label_weights * per_example_loss)
    denominator = tf.reduce_sum(input_tensor=label_weights) + 1e-5
    loss = numerator / denominator

  return (loss, per_example_loss, log_probs)


def get_next_sentence_output(bert_config, input_tensor, labels,
                             enable_packed_data_mode: bool = False,
                             is_training: bool = False,
                             weights: Union[Tensor, type(None)] = None):
  """Get loss and log probs for the next sentence prediction."""

  # Simple binary classification. Note that 0 is "next sentence" and 1 is
  # "random sentence". This weight matrix is not used after pre-training.
  with tf.compat.v1.variable_scope("cls/seq_relationship"):
    output_weights = tf.compat.v1.get_variable(
        "output_weights",
        shape=[2, bert_config.hidden_size],
        initializer=modeling.create_initializer(bert_config.initializer_range))
    output_bias = tf.compat.v1.get_variable(
        "output_bias", shape=[2], initializer=tf.compat.v1.zeros_initializer())

    logits = tf.matmul(tf.cast(input_tensor, tf.float32), output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    log_probs = tf.nn.log_softmax(logits - tf.reduce_max(logits, keepdims=True, axis=-1), axis=-1)
    labels = tf.reshape(labels, [-1])
    one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(input_tensor=one_hot_labels * log_probs, axis=-1)
    if enable_packed_data_mode and is_training: # only training should work in packed mode
      weights = tf.reshape(weights, [-1])
      numerator = tf.reduce_sum(input_tensor=weights * per_example_loss)
      denominator = tf.reduce_sum(input_tensor=weights) + 1e-5
      loss = numerator / denominator
    else:
      loss = tf.reduce_mean(input_tensor=per_example_loss)
    return (loss, per_example_loss, log_probs)


def input_fn_builder(input_files,
                     batch_size,
                     max_seq_length,
                     max_predictions_per_seq,
                     is_training,
                     enable_packed_data_mode,
                     num_cpu_threads=4):
  """Creates an `input_fn` closure to be passed to Estimator."""

  def input_fn():
    """The actual input function."""

    if enable_packed_data_mode and is_training: # only training should work in packed mode
      name_to_features = {
        "input_ids":
          tf.io.FixedLenFeature([max_seq_length], tf.int64),
        "input_mask":
          tf.io.FixedLenFeature([max_seq_length], tf.int64),
        "segment_ids":
          tf.io.FixedLenFeature([max_seq_length], tf.int64),
        "positions":
          tf.io.FixedLenFeature([max_seq_length], tf.int64),
        "masked_lm_positions":
          tf.io.FixedLenFeature([max_predictions_per_seq + 3], tf.int64),
        "masked_lm_ids":
          tf.io.FixedLenFeature([max_predictions_per_seq + 3], tf.int64),
        "masked_lm_weights":
          tf.io.FixedLenFeature([max_predictions_per_seq + 3], tf.float32),
        "next_sentence_positions":
          tf.io.FixedLenFeature([3], tf.int64),
        "next_sentence_labels":
          tf.io.FixedLenFeature([3], tf.int64),
        "next_sentence_weights":
          tf.io.FixedLenFeature([3], tf.float32),
      }
    else:
      name_to_features = {
          "input_ids":
              tf.io.FixedLenFeature([max_seq_length], tf.int64),
          "input_mask":
              tf.io.FixedLenFeature([max_seq_length], tf.int64),
          "segment_ids":
              tf.io.FixedLenFeature([max_seq_length], tf.int64),
          "masked_lm_positions":
              tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
          "masked_lm_ids":
              tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
          "masked_lm_weights":
              tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32),
          "next_sentence_labels":
              tf.io.FixedLenFeature([1], tf.int64),
      }

    if FLAGS.deterministic_run:
      d = tf.data.TFRecordDataset(input_files)
      d = d.apply(
          tf.data.experimental.map_and_batch(
              lambda record: _decode_record(record, name_to_features),
              batch_size=batch_size,
              num_parallel_calls=1,
              drop_remainder=True))
      return d

    # For training, we want a lot of parallel reading and shuffling.
    # For eval, we want no shuffling and parallel reading doesn't matter.
    if is_training:
      d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
      if horovod_enabled(): d = d.shard(hvd.size(), hvd.rank())
      d = d.repeat()
      d = d.shuffle(buffer_size=len(input_files))

      # `cycle_length` is the number of parallel files that get read.
      cycle_length = min(num_cpu_threads, len(input_files))

      # `sloppy` mode means that the interleaving is not exact. This adds
      # even more randomness to the training pipeline.
      d = d.apply(
          tf.data.experimental.parallel_interleave(
              tf.data.TFRecordDataset,
              sloppy=is_training,
              cycle_length=cycle_length))
      d = d.shuffle(buffer_size=100)
    else:
      d = tf.data.TFRecordDataset(input_files)
      # Since we evaluate for a fixed number of steps we don't want to encounter
      # out-of-range exceptions.
      d = d.repeat()

    # We must `drop_remainder` on training because the TPU requires fixed
    # size dimensions. For eval, we assume we are evaluating on the CPU or GPU
    # and we *don't* want to drop the remainder, otherwise we wont cover
    # every sample.
    d = d.apply(
        tf.data.experimental.map_and_batch(
            lambda record: _decode_record(record, name_to_features),
            batch_size=batch_size,
            num_parallel_batches=num_cpu_threads,
            drop_remainder=True if is_training else False))
    return d

  return input_fn


def _decode_record(record, name_to_features):
  """Decodes a record to a TensorFlow example."""
  example = tf.io.parse_single_example(serialized=record, features=name_to_features)

  # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
  # So cast all int64 to int32.
  for name in list(example.keys()):
    t = example[name]
    if t.dtype == tf.int64:
      t = tf.cast(t, dtype=tf.int32)
    example[name] = t

  return example

def read_avg_seq_per_pack(metadata_file_path : str) -> float:
  metadata = None
  avg_seq_per_pack = 1.0
  with open(metadata_file_path, mode='r') as json_file:
    metadata = json.loads(json_file.read())
  if metadata is not None:
    avg_seq_per_sample_key = "avg_seq_per_sample"
    if avg_seq_per_sample_key in metadata.keys():
      avg_seq_per_pack = metadata[avg_seq_per_sample_key]
    else:
      raise KeyError(f"Key {avg_seq_per_sample_key} not present in packed dataset metadata file: {metadata_file_path}")
  return avg_seq_per_pack

def main(_):
  logger = tf.get_logger()
  logger.propagate = False

  metadata_file_path = get_metadata_file_path(FLAGS.input_files_dir)
  avg_seq_per_pack = 1.0
  enable_packed_data_mode = False
  if os.path.exists(metadata_file_path): # file exists, so this is a packed directory
    avg_seq_per_pack = read_avg_seq_per_pack(metadata_file_path)
    enable_packed_data_mode = True

  if enable_packed_data_mode:
    FLAGS.num_accumulation_steps = round(FLAGS.num_accumulation_steps / avg_seq_per_pack)

  os.environ["TF_XLA_FLAGS"] = "--tf_xla_enable_lazy_compilation=false" #causes memory fragmentation for bert leading to OOM

  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
  dllogging = dllogger_class.dllogger_class(FLAGS.dllog_path)

  if not FLAGS.do_train and not FLAGS.do_eval:
    raise ValueError("At least one of `do_train` or `do_eval` must be True.")

  # In multi-node scenario, on each of HLSes there must be a checkpoint directly in the output_dir (read by Phase 2).
  # There may be only one worker with comm_local_rank() == 0 on each machine and this worker will put its checkpoints there.
  # All other workers use sub-directories to keep checkpoints.
  if horovod_enabled() and comm_local_rank() != 0:
    FLAGS.output_dir = os.path.join(FLAGS.output_dir, f'worker_{hvd.rank()}')

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  tf.io.gfile.makedirs(FLAGS.output_dir)

  input_files = []
  for input_file_dir in FLAGS.input_files_dir.split(","):
    input_files.extend(tf.io.gfile.glob(os.path.join(input_file_dir, "*")))

  if FLAGS.horovod and len(input_files) < hvd.size():
      tf.compat.v1.logging.warning("Input files count lower then expected. Using single file for OVERFIT test.")
      input_files = [input_files[0] for i in range(hvd.size())]
  if FLAGS.amp and FLAGS.manual_fp16:
      raise ValueError("AMP and Manual Mixed Precision Training are both activated! Error")

  is_per_host = tf.compat.v1.estimator.tpu.InputPipelineConfig.PER_HOST_V2

  # The Scoped Allocator Optimization is enabled by default unless disabled by a flag.
  if FLAGS.enable_scoped_allocator:
    from tensorflow.core.protobuf import rewriter_config_pb2  # pylint: disable=import-error

    session_config = tf.compat.v1.ConfigProto()
    session_config.graph_options.rewrite_options.scoped_allocator_optimization = rewriter_config_pb2.RewriterConfig.ON

    enable_op = session_config.graph_options.rewrite_options.scoped_allocator_opts.enable_op
    del enable_op[:]
    enable_op.append("HorovodAllreduce")
  else:
    session_config = tf.compat.v1.ConfigProto()

  if FLAGS.horovod:
    session_config.gpu_options.visible_device_list = str(hvd.local_rank())
    if hvd.rank() == 0:
      tf.compat.v1.logging.info("***** Configuaration *****")
      for key in FLAGS.__flags.keys():
          tf.compat.v1.logging.info('  {}: {}'.format(key, getattr(FLAGS, key)))
      tf.compat.v1.logging.info("**************************")

#    config.gpu_options.per_process_gpu_memory_fraction = 0.7
  if FLAGS.use_xla:
      session_config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1
      session_config.graph_options.rewrite_options.memory_optimization = rewriter_config_pb2.RewriterConfig.NO_MEM_OPT
      if FLAGS.amp:
        tf.compat.v1.enable_resource_variables()

  run_config = tf.estimator.RunConfig(
      model_dir=FLAGS.output_dir,
      session_config=session_config,
      save_checkpoints_steps=FLAGS.save_checkpoints_steps,
      keep_checkpoint_max = FLAGS.keep_checkpoint_max,
      save_summary_steps=FLAGS.save_summary_steps,
      log_step_count_steps=1)

  model_fn = model_fn_builder(
      bert_config=bert_config,
      init_checkpoint=FLAGS.init_checkpoint,
      learning_rate=FLAGS.learning_rate if not FLAGS.horovod else FLAGS.learning_rate*hvd.size(),
      num_train_steps=FLAGS.num_train_steps,
      num_warmup_steps=FLAGS.num_warmup_steps,
      use_one_hot_embeddings=False,
      enable_packed_data_mode=enable_packed_data_mode)

  estimator = tf.estimator.Estimator(
      model_fn=model_fn,
      config=run_config)

  batch_size_per_node = FLAGS.train_batch_size * FLAGS.num_accumulation_steps
  global_batch_size = (hvd.size() if FLAGS.horovod else 1) * batch_size_per_node
  write_hparams_v1(FLAGS.output_dir, {
    'batch_size': FLAGS.train_batch_size,
    'batch_size_per_pu': FLAGS.train_batch_size,
    'batch_size_per_node': batch_size_per_node,
    'global_batch_size': global_batch_size,
    **{x: getattr(FLAGS, x) for x in FLAGS}
  })

  if FLAGS.do_train:

    training_hooks = []
    if horovod_enabled():
      training_hooks.append(hvd.BroadcastGlobalVariablesHook(0))

    global_batch_size = global_batch_size * avg_seq_per_pack if enable_packed_data_mode else global_batch_size
    batch_size_per_node = batch_size_per_node * avg_seq_per_pack if enable_packed_data_mode else batch_size_per_node
    train_log_hook = _LogSessionRunHook(
      global_batch_size, FLAGS.num_accumulation_steps, dllogging,
      FLAGS.display_loss_steps, FLAGS.save_checkpoints_steps, FLAGS.report_loss)
    training_hooks.append(train_log_hook)

    training_hooks.append(ExamplesPerSecondEstimatorHook(
      batch_size=batch_size_per_node, output_dir=FLAGS.output_dir,
      extra_metrics={'global_examples/sec': global_batch_size}))

    if len(FLAGS.profile) > 0:
        training_hooks.append(TensorBoardHook(output_dir=FLAGS.output_dir,profile_steps=FLAGS.profile))
    tf.compat.v1.logging.info("***** Running training *****")
    tf.compat.v1.logging.info("  Batch size = %d", FLAGS.train_batch_size)
    train_input_fn = input_fn_builder(
        input_files=input_files,
        batch_size=FLAGS.train_batch_size,
        max_seq_length=FLAGS.max_seq_length,
        max_predictions_per_seq=FLAGS.max_predictions_per_seq,
        is_training=True, enable_packed_data_mode=enable_packed_data_mode)

    train_start_time = time.time()
    with dump_callback():
      estimator.train(input_fn=train_input_fn, hooks=training_hooks, max_steps=FLAGS.num_train_steps)
    train_time_elapsed = time.time() - train_start_time
    if (not FLAGS.horovod or hvd.rank() == 0):
        train_time_wo_overhead = train_log_hook.total_time
        avg_sentences_per_second = FLAGS.num_train_steps * global_batch_size * 1.0 / train_time_elapsed
        try:
            ss_sentences_per_second = (FLAGS.num_train_steps - train_log_hook.skipped) * global_batch_size * 1.0 / train_time_wo_overhead
            throughput_avg_wo_overhead_msg = ["Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second]
        except:
            ss_sentences_per_second = float('nan')
            throughput_avg_wo_overhead_msg = [f"Throughput Average W/O Overhead is not logged when num_train_steps < {train_log_hook.skip_iters}"]

        tf.compat.v1.logging.info("-----------------------------")
        tf.compat.v1.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed,
                        FLAGS.num_train_steps * global_batch_size)
        tf.compat.v1.logging.info("Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead,
                        (FLAGS.num_train_steps - train_log_hook.skipped) * global_batch_size)
        tf.compat.v1.logging.info("Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second)
        tf.compat.v1.logging.info(*throughput_avg_wo_overhead_msg)
        dllogging.logger.log(step=(), data={"throughput_train": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT)
        tf.compat.v1.logging.info("-----------------------------")

    if FLAGS.export_dir is not None:
      def serving_input_fn(enable_packed_data_mode=enable_packed_data_mode):
        max_seq_length_ph_shape = [None, FLAGS.max_seq_length]
        input_ids = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='input_ids')
        input_mask = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='input_mask')
        segment_ids = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='segment_ids')
        if enable_packed_data_mode and hvd.rank() == 0:
          masked_lm_positions = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq + 3], name='masked_lm_positions')
          masked_lm_ids = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq + 3], name='masked_lm_ids')
          masked_lm_weights = tf.compat.v1.placeholder(tf.float32, [None, FLAGS.max_predictions_per_seq + 3], name='masked_lm_weights')
          next_sentence_labels = tf.compat.v1.placeholder(tf.int32, [None, 3], name='next_sentence_labels')
          positions = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='positions')
          next_sentence_positions = tf.compat.v1.placeholder(tf.int32, [None, 3], name='next_sentence_positions')
          next_sentence_weights = tf.compat.v1.placeholder(tf.float32, [None, 3], name='next_sentence_weights')
          input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
            'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids,
            'masked_lm_positions': masked_lm_positions, 'masked_lm_ids': masked_lm_ids,
            'masked_lm_weights': masked_lm_weights, 'next_sentence_labels': next_sentence_labels,
            'positions': positions, 'next_sentence_positions': next_sentence_positions, 'next_sentence_weights': next_sentence_weights})()
        elif not horovod_enabled():
          masked_lm_positions = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq], name='masked_lm_positions')
          masked_lm_ids = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq], name='masked_lm_ids')
          masked_lm_weights = tf.compat.v1.placeholder(tf.float32, [None, FLAGS.max_predictions_per_seq], name='masked_lm_weights')
          next_sentence_labels = tf.compat.v1.placeholder(tf.int32, [None, 1], name='next_sentence_labels')
          input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
            'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids,
            'masked_lm_positions': masked_lm_positions, 'masked_lm_ids': masked_lm_ids,
            'masked_lm_weights': masked_lm_weights, 'next_sentence_labels': next_sentence_labels})()
        return input_fn

      if hvd.rank() == 0 or not horovod_enabled():
        input_receiver_fn_map={tf.estimator.ModeKeys.TRAIN : serving_input_fn}
        estimator.experimental_export_all_saved_models(FLAGS.export_dir, input_receiver_fn_map)

  if FLAGS.do_eval and (not FLAGS.horovod or hvd.rank() == 0):
    tf.compat.v1.logging.info("***** Running evaluation *****")
    tf.compat.v1.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

    eval_files = []
    for eval_file_dir in FLAGS.eval_files_dir.split(","):
        eval_files.extend(tf.io.gfile.glob(os.path.join(eval_file_dir, "*")))

    eval_input_fn = input_fn_builder(
        input_files=eval_files,
        batch_size=FLAGS.eval_batch_size,
        max_seq_length=FLAGS.max_seq_length,
        max_predictions_per_seq=FLAGS.max_predictions_per_seq,
        is_training=False)

    eval_hooks = [LogEvalRunHook(FLAGS.eval_batch_size)]
    eval_start_time = time.time()
    result = estimator.evaluate(
        input_fn=eval_input_fn, steps=FLAGS.max_eval_steps, hooks=eval_hooks)

    eval_time_elapsed = time.time() - eval_start_time
    time_list = eval_hooks[-1].time_list
    time_list.sort()
    # Removing outliers (init/warmup) in throughput computation.
    eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.99)])
    num_sentences = (int(len(time_list) * 0.99)) * FLAGS.eval_batch_size

    ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead
    tf.compat.v1.logging.info("-----------------------------")
    tf.compat.v1.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed,
                    eval_hooks[-1].count * FLAGS.eval_batch_size)
    tf.compat.v1.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead,
                    num_sentences)
    tf.compat.v1.logging.info("Summary Inference Statistics on EVAL set")
    tf.compat.v1.logging.info("Batch size = %d", FLAGS.eval_batch_size)
    tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length)
    tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.amp else "fp32")
    tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second)
    dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT)
    tf.compat.v1.logging.info("-----------------------------")

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    with tf.io.gfile.GFile(output_eval_file, "w") as writer:
      tf.compat.v1.logging.info("***** Eval results *****")
      for key in sorted(result.keys()):
        tf.compat.v1.logging.info("  %s = %s", key, str(result[key]))
        writer.write("%s = %s\n" % (key, str(result[key])))


if __name__ == "__main__":
  init_flags()

  if FLAGS.bf16_config_path is not None:
    os.environ['TF_BF16_CONVERSION'] = FLAGS.bf16_config_path

  bert_config = json.load(open(FLAGS.bert_config_file, 'r'))
  if 'hidden_size' in bert_config and bert_config['hidden_size'] == 768:
    # cluster slicing optimization tested for bert base, works well with this size
    os.environ.setdefault('TF_PRELIMINARY_CLUSTER_SIZE', '1000')
  os.environ.setdefault("TF_DISABLE_MKL", "1")

  flags.mark_flag_as_required("input_files_dir")
  if FLAGS.do_eval:
    flags.mark_flag_as_required("eval_files_dir")
  flags.mark_flag_as_required("bert_config_file")
  flags.mark_flag_as_required("output_dir")
  if FLAGS.deterministic_run:
    set_random_seed(1)
    modeling.dropout = lambda input_tensor, dropout_prob: input_tensor  # disable dropout

  if FLAGS.horovod:
    if hvd is None:
      raise RuntimeError(
          "Problem encountered during Horovod import. Please make sure that habana-horovod package is installed.")
    hvd.init()
  load_habana_module()

  if FLAGS.use_xla and FLAGS.manual_fp16:
    print('WARNING! Combining --use_xla with --manual_fp16 may prevent convergence.')
    print('         This warning message will be removed when the underlying')
    print('         issues have been fixed and you are running a TF version')
    print('         that has that fix.')
  tf.compat.v1.app.run()