File size: 14,304 Bytes
eb49b41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# Transformer for TensorFlow
This repository provides a script and recipe to train the Transformer model for Tensorflow on Intel® Gaudi® AI Accelerator. For further information on performance, refer to [Habana Model Performance Data page](https://developer.habana.ai/resources/habana-training-models/#performance).
For more information on training deep learning models using Gaudi, refer to [developer.habana.ai](https://developer.habana.ai/resources/).
## Table of Contents
* [Model-References](../../../README.md)
* [Model Overview](#model-overview)
* [Setup](#setup)
* [Training and Examples](#training-and-examples)
* [Evaluating BLEU Score](#evaluating-bleu-score)
* [Profile](#profile)
* [Supported Configuration](#supported-configuration)
* [Changelog](#changelog)
* [Known Issues](#known-issues)
## Model Overview
The Transformer is a Neural Machine Translation (NMT) model which uses attention mechanism to boost training speed and overall accuracy.
The model was initially introduced in [Attention Is All You Need](https://arxiv.org/abs/1706.03762).
This implementation is based on [Tensor2Tensor](https://github.com/tensorflow/tensor2tensor) implementation (authors: Google Inc., Artit Wangperawong).
There are three model variants available: tiny, base and big.
### Model Architecture
The Transformer model uses standard NMT encoder-decoder architecture. Unlike other NMT models, Transformer model does not use recurrent connections and operates on fixed size context window.
The encoder stack is made up of N identical layers. Each layer is composed of the following sub-layers:
- Self-attention layer
- Feedforward network (which is 2 fully-connected layers)
The decoder stack is also made up of N identical layers. Each layer is composed of the sub-layers:
- Self-attention layer
- Multi-headed attention layer combining encoder outputs with results from the previous self-attention layer.
- Feedforward network (2 fully-connected layers)
The encoder uses self-attention to compute a representation of the input sequence. The decoder generates the output sequence one token at a time, taking the encoder output and previous decoder-outputted tokens as inputs.
The model also applies embeddings on the input and output tokens, and adds a constant positional encoding. The positional encoding adds information about the position of each token.
The complete description of the Transformer architecture can be found in [Attention Is All You Need](https://arxiv.org/abs/1706.03762) paper.
## Setup
Please follow the instructions provided in the [Gaudi Installation Guide](https://docs.habana.ai/en/latest/Installation_Guide/GAUDI_Installation_Guide.html) to set up the environment including the `$PYTHON` environment variable. To achieve the best performance, please follow the methods outlined in the [Optimizing Training Platform guide](https://docs.habana.ai/en/latest/TensorFlow/Model_Optimization_TensorFlow/Optimization_Training_Platform.html).
The guides will walk you through the process of setting up your system to run the model on Gaudi.
### Clone Habana Model-References
In the docker container, clone this repository and switch to the branch that matches your SynapseAI version. You can run the [`hl-smi`](https://docs.habana.ai/en/latest/Management_and_Monitoring/System_Management_Tools_Guide/System_Management_Tools.html#hl-smi-utility-options) utility to determine the SynapseAI version.
```bash
git clone -b [SynapseAI version] https://github.com/HabanaAI/Model-References /root/Model-References
```
**Note:** If Model-References repository path is not in the PYTHONPATH, make sure you update it:
```bash
export PYTHONPATH=$PYTHONPATH:/root/Model-References
```
### Download and Generate the Dataset
Go to the Transformer directory and generate the dataset. The following script will save the dataset to `/data/tensorflow/wmt32k_packed/train`:
```bash
cd Model-References/TensorFlow/nlp/transformer/
$PYTHON datagen.py \
--data_dir=/data/tensorflow/wmt32k_packed/train \
--tmp_dir=/tmp/transformer_datagen \
--problem=translate_ende_wmt32k_packed \
--random_seed=429459
```
### Install Model Requirements
1. In the docker container, go to the Transformer directory:
```bash
cd /root/Model-References/TensorFlow/nlp/transformer
```
2. Install the required packages using pip:
```bash
$PYTHON -m pip install -r requirements.txt
```
## Training and Examples
### Single card and Multi-Card Training Examples
**NOTE:** All training examples for 1 HPU and 8 HPUs are valid both for first-gen Gaudi and Gaudi2.
**Run training on 1 HPU:**
```bash
$PYTHON trainer.py \
--data_dir=<path_to_dataset>/train \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_<model_size> \
--hparams=batch_size=<batch_size> \
--output_dir=<path_to_output_dir> \
--local_eval_frequency=<eval_frequency> \
--train_steps=<train_steps> \
--schedule=train \
--use_hpu=True \
--use_bf16=<use_bf16>
```
Run training on 1 HPU, batch size 4096, bfloat16, transformer_big, 300k steps with a checkpoint saved every 10k steps, last 10 checkpoints kept:
```bash
$PYTHON trainer.py \
--data_dir=/data/tensorflow/wmt32k_packed/train/ \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_big \
--hparams=batch_size=4096 \
--output_dir=./translate_ende_wmt32k_packed/transformer_big/bs4096 \
--local_eval_frequency=10000 \
--keep_checkpoint_max=10 \
--train_steps=300000 \
--schedule=train \
--use_hpu=True \
--use_bf16=True
```
For Gaudi2, training batch size can be increased for better performance:
```bash
$PYTHON trainer.py \
--data_dir=/data/tensorflow/wmt32k_packed/train/ \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_big \
--hparams=batch_size=16384,learning_rate_constant=5.0,learning_rate_warmup_steps=5000 \
--output_dir=./translate_ende_wmt32k_packed/transformer_big/bs16384 \
--local_eval_frequency=2500 \
--keep_checkpoint_max=10 \
--train_steps=75000 \
--schedule=train \
--use_hpu=True \
--use_bf16=True
```
**Run training on 8 HPUs:**
**NOTE:** mpirun map-by PE attribute value may vary on your setup. For the recommended calculation, refer to the instructions detailed in [mpirun Configuration](https://docs.habana.ai/en/latest/TensorFlow/Tensorflow_Scaling_Guide/Horovod_Scaling/index.html#mpirun-configuration).
Run training on 8 HPUs, global batch size 8 * 4096, bfloat16, transformer_big, 300k steps with a checkpoint saved every 10k steps, last 10 checkpoints kept, learning rate constant 2.5:
```bash
mpirun \
--allow-run-as-root --bind-to core --map-by socket:PE=6 --np 8 \
--tag-output --merge-stderr-to-stdout \
$PYTHON trainer.py \
--data_dir=/data/tensorflow/wmt32k_packed/train/ \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_big \
--hparams=batch_size=4096,learning_rate_constant=2.5 \
--output_dir=./translate_ende_wmt32k_packed/transformer_big/bs4096 \
--local_eval_frequency=10000 \
--keep_checkpoint_max=10 \
--train_steps=300000 \
--schedule=train \
--use_horovod=True \
--use_hpu=True \
--use_bf16=True
```
For Gaudi2, training batch size can be increased for better performance:
```bash
mpirun \
--allow-run-as-root --bind-to core --map-by socket:PE=6 --np 8 \
--tag-output --merge-stderr-to-stdout \
$PYTHON trainer.py \
--data_dir=/data/tensorflow/wmt32k_packed/train/ \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_big \
--hparams=batch_size=16384,learning_rate_constant=5.0,learning_rate_warmup_steps=5000 \
--output_dir=./translate_ende_wmt32k_packed/transformer_big/bs16384 \
--local_eval_frequency=2500 \
--keep_checkpoint_max=10 \
--train_steps=75000 \
--schedule=train \
--use_horovod=True \
--use_hpu=True \
--use_bf16=True
```
### Multi-Server Training and Examples
To run training on multiple servers, make sure to set the `MULTI_HLS_IPS` environment
variable with the IPs of the used servers.
**NOTE:** Multi-server training is supported only on first-gen Gaudi.
**Run training on 16 HPUs:**
```bash
export MULTI_HLS_IPS=192.10.100.174,10.10.100.101
mpirun \
--allow-run-as-root --bind-to core --map-by socket:PE=6 --np 8 \
--tag-output --merge-stderr-to-stdout \
$PYTHON trainer.py \
--data_dir=/data/tensorflow/wmt32k_packed/train/ \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_big \
--hparams=batch_size=4096,learning_rate_constant=3.0 \
--output_dir=./translate_ende_wmt32k_packed/transformer_big/bs4096 \
--local_eval_frequency=50000 \
--train_steps=150000 \
--schedule=train \
--use_horovod=True \
--use_hpu=True \
--use_bf16=True
```
**Run training on 32 HPUs:**
**NOTE:** It is recommended to use `learning_rate_constant` 3.5 and `train_steps` 75000.
```bash
export MULTI_HLS_IPS=192.10.100.174,10.10.100.101,10.10.100.102,10.10.100.103
mpirun \
--allow-run-as-root --bind-to core --map-by socket:PE=6 --np 8 \
--tag-output --merge-stderr-to-stdout \
$PYTHON trainer.py \
--data_dir=/data/tensorflow/wmt32k_packed/train/ \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_big \
--hparams=batch_size=4096,learning_rate_constant=3.5 \
--output_dir=./translate_ende_wmt32k_packed/transformer_big/bs4096 \
--local_eval_frequency=50000 \
--train_steps=75000 \
--schedule=train \
--use_horovod=True \
--use_hpu=True \
--use_bf16=True
```
## Evaluating BLEU Score
After training the model, you can evaluate the achieved BLEU score:
1. Download and tokenize the validation file:
```bash
sacrebleu -t wmt14 -l en-de --echo src > wmt14.src
cat wmt14.src | sacremoses tokenize -l en > wmt14.src.tok
```
2. Compute BLEU score of a single checkpoint:
```bash
$PYTHON decoder.py \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_big \
--data_dir=<path_to_dataset>/train \
--output_dir=<path_to_output_dir> \
--checkpoint_path=<path_to_checkpoint> \
--use_hpu=True \
--decode_from_file=./wmt14.src.tok \
--decode_to_file=./wmt14.tgt.tok \
--decode_hparams=log_results=False
cat wmt14.tgt.tok | sacremoses detokenize -l de | sacrebleu -t wmt14 -l en-de
```
3. Optional: To split BLEU calculation to multiple cards, run `decoder.py` through `mpirun`. For example:
```bash
mpirun \
--allow-run-as-root --bind-to core --map-by socket:PE=6 --np 8 \
--tag-output --merge-stderr-to-stdout \
$PYTHON decoder.py \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_big \
--data_dir=<path_to_dataset>/train \
--output_dir=<path_to_output_dir> \
--checkpoint_path=<path_to_checkpoint> \
--decode_from_file=./wmt14.src.tok \
--decode_to_file=./wmt14.tgt.tok \
--use_hpu=True \
--use_horovod=True \
--decode_hparams=log_results=False
cat wmt14.tgt.tok | sacremoses detokenize -l de | sacrebleu -t wmt14 -l en-de
```
**NOTE:** mpirun map-by PE attribute value may vary on your setup. For the recommended calculation, refer to the instructions detailed in [mpirun Configuration](https://docs.habana.ai/en/latest/TensorFlow/Tensorflow_Scaling_Guide/Horovod_Scaling/index.html#mpirun-configuration).
## Profile
To run with profiling enabled, pass `--profile_steps` flag. It should be a comma separated pair of numbers - on which step to start and end profiling.
Profiler steps are counted individually for each run. Thus, if you run training for 100 steps, with `--profile_steps 99,100`, profiling will be always enabled for the last two steps, no matter the `global_step_count`.
**Run training on 1 HPU with profiler:**
```bash
$PYTHON trainer.py \
--data_dir=/data/tensorflow/wmt32k_packed/train/ \
--problem=translate_ende_wmt32k_packed \
--model=transformer \
--hparams_set=transformer_big \
--hparams=batch_size=4096 \
--output_dir=./translate_ende_wmt32k_packed/transformer_big/bs4096 \
--local_eval_frequency=10000 \
--train_steps=100 \
--schedule=train \
--use_hpu=True \
--profile_steps 50,53
```
The above example will produce profile trace for 4 steps (50,51,52,53).
## Supported Configuration
| Validated on | SynapseAI Version | TensorFlow Version(s) | Mode |
|:------:|:-----------------:|:-----:|:----------:|
| Gaudi | 1.14.0 | 2.15.0 | Training |
| Gaudi2 | 1.14.0 | 2.15.0 | Training |
## Changelog
### 1.6.0
* Model enabled on Gaudi2, with the same config as first-gen Gaudi.
* Added profiling support.
* Enabled experimental variable clustering to improve performance.
* Removed advanced parameters section from README.
### 1.4.0
* Replaced references to custom demo script by community entry points in README.
* Added support to import horovod-fork package directly instead of using Model-References' TensorFlow.common.horovod_helpers; wrapped horovod import with a try-catch block so that the user is not required to install this library when the model is being run on a single card.
* Updated requirements.txt.
* Changed the default value of the log_step_count_steps flag.
### 1.3.0
* Enabled multi-HPU BLEU calculation.
* Updated requirements.txt.
### 1.2.0
* Added support for recipe cache, see `TF_RECIPE_CACHE_PATH` in HabanaAI documentation for details.
* Enabled multi-server training.
### Training Script Modifications
* Support for other models than Transformer was removed.
* Added support for Horovod together with some adjustments in the topology script to allow simplifying the computational graph.
## Known Issues
Only FP32 precision is supported when calculating BLEU on HPU.
|