File size: 9,931 Bytes
eb49b41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2021 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
# Copyright (C) 2021-2022 Habana Labs, Ltd. an Intel Company
###############################################################################
# Changes:
# - renamed from t2t_decoder.py to decoder.py
# - added shebang
# - organized imports
# - added support for HPU
# - renamed t2t_trainer to trainer
# - added use_hpu hparam
# - added workarounds to run on HPU
# - added support for recipe cache
# - added support for fast inference
# - added support for horovod
r"""Decode from trained T2T models.
This binary performs inference using the Estimator API.
Example usage to decode from dataset:
./decoder.py \
--data_dir ~/data \
--problem=algorithmic_identity_binary40 \
--model=transformer
--hparams_set=transformer_base
Set FLAGS.decode_interactive or FLAGS.decode_from_file for alternative decode
sources.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
from TensorFlow.nlp.transformer import trainer
from TensorFlow.nlp.transformer.data_generators import problem # pylint: disable=unused-import
from TensorFlow.nlp.transformer.data_generators import text_encoder
from TensorFlow.nlp.transformer.utils import decoding
from TensorFlow.nlp.transformer.utils import registry
from TensorFlow.nlp.transformer.utils import trainer_lib
from TensorFlow.nlp.transformer.utils import usr_dir
import tensorflow.compat.v1 as tf
flags = tf.flags
FLAGS = flags.FLAGS
# Additional flags in trainer.py and utils/flags.py
flags.DEFINE_string("checkpoint_path", None,
"Path to the model checkpoint. Overrides output_dir.")
flags.DEFINE_bool("keep_timestamp", False,
"Set the mtime of the decoded file to the "
"checkpoint_path+'.index' mtime.")
flags.DEFINE_bool("decode_interactive", False,
"Interactive local inference mode.")
flags.DEFINE_integer("decode_shards", 1, "Number of decoding replicas.")
flags.DEFINE_string("score_file", "", "File to score. Each line in the file "
"must be in the format input \t target.")
flags.DEFINE_bool("decode_in_memory", False, "Decode in memory.")
flags.DEFINE_bool("disable_grappler_optimizations", False,
"Disable Grappler if need be to avoid tensor format errors.")
flags.DEFINE_bool("use_fast_inference", True, "Use fast inference with static shapes")
def create_hparams():
hparams_path = None
if FLAGS.output_dir:
hparams_path = os.path.join(FLAGS.output_dir, "hparams.json")
return trainer_lib.create_hparams(
FLAGS.hparams_set,
FLAGS.hparams,
data_dir=os.path.expanduser(FLAGS.data_dir),
problem_name=FLAGS.problem,
hparams_path=hparams_path)
def create_decode_hparams():
decode_hp = decoding.decode_hparams(FLAGS.decode_hparams)
decode_hp.shards = FLAGS.decode_shards
decode_hp.shard_id = FLAGS.worker_id
decode_in_memory = FLAGS.decode_in_memory or decode_hp.decode_in_memory
decode_hp.decode_in_memory = decode_in_memory
decode_hp.decode_to_file = FLAGS.decode_to_file
decode_hp.decode_reference = FLAGS.decode_reference
return decode_hp
def decode(estimator, hparams, decode_hp):
"""Decode from estimator. Interactive, from file, or from dataset."""
if FLAGS.decode_interactive:
if estimator.config.use_tpu:
raise ValueError("TPU can only decode from dataset.")
decoding.decode_interactively(estimator, hparams, decode_hp,
checkpoint_path=FLAGS.checkpoint_path)
elif FLAGS.decode_from_file:
decoding.decode_from_file(estimator, FLAGS.decode_from_file, hparams,
decode_hp, FLAGS.decode_to_file,
checkpoint_path=FLAGS.checkpoint_path)
if FLAGS.checkpoint_path and FLAGS.keep_timestamp:
ckpt_time = os.path.getmtime(FLAGS.checkpoint_path + ".index")
os.utime(FLAGS.decode_to_file, (ckpt_time, ckpt_time))
else:
decoding.decode_from_dataset(
estimator,
FLAGS.problem,
hparams,
decode_hp,
decode_to_file=FLAGS.decode_to_file,
dataset_split="test" if FLAGS.eval_use_test_set else None,
checkpoint_path=FLAGS.checkpoint_path)
def score_file(filename):
"""Score each line in a file and return the scores."""
# Prepare model.
hparams = create_hparams()
encoders = registry.problem(FLAGS.problem).feature_encoders(FLAGS.data_dir)
has_inputs = "inputs" in encoders
# Prepare features for feeding into the model.
if has_inputs:
inputs_ph = tf.placeholder(dtype=tf.int32) # Just length dimension.
batch_inputs = tf.reshape(inputs_ph, [1, -1, 1, 1]) # Make it 4D.
targets_ph = tf.placeholder(dtype=tf.int32) # Just length dimension.
batch_targets = tf.reshape(targets_ph, [1, -1, 1, 1]) # Make it 4D.
if has_inputs:
features = {"inputs": batch_inputs, "targets": batch_targets}
else:
features = {"targets": batch_targets}
# Prepare the model and the graph when model runs on features.
model = registry.model(FLAGS.model)(hparams, tf.estimator.ModeKeys.EVAL)
_, losses = model(features)
saver = tf.train.Saver()
with tf.Session() as sess:
# Load weights from checkpoint.
if FLAGS.checkpoint_path is None:
ckpts = tf.train.get_checkpoint_state(FLAGS.output_dir)
ckpt = ckpts.model_checkpoint_path
else:
ckpt = FLAGS.checkpoint_path
saver.restore(sess, ckpt)
# Run on each line.
with tf.gfile.Open(filename) as f:
lines = f.readlines()
results = []
for line in lines:
tab_split = line.split("\t")
if len(tab_split) > 2:
raise ValueError("Each line must have at most one tab separator.")
if len(tab_split) == 1:
targets = tab_split[0].strip()
else:
targets = tab_split[1].strip()
inputs = tab_split[0].strip()
# Run encoders and append EOS symbol.
targets_numpy = encoders["targets"].encode(
targets) + [text_encoder.EOS_ID]
if has_inputs:
inputs_numpy = encoders["inputs"].encode(inputs) + [text_encoder.EOS_ID]
# Prepare the feed.
if has_inputs:
feed = {inputs_ph: inputs_numpy, targets_ph: targets_numpy}
else:
feed = {targets_ph: targets_numpy}
# Get the score.
np_loss = sess.run(losses["training"], feed)
results.append(np_loss)
return results
def get_workaround_flag(name):
return f'WA_{name}'
def is_workaround_enabled(name):
flag = get_workaround_flag(name)
is_enabled = os.environ.get(flag, 'true') == 'true'
if is_enabled:
print(f"Warning! Workaround {flag} is enabled. Run with {flag}=false to disable it.")
return is_enabled
def main(_):
tf.disable_v2_behavior()
tf.enable_resource_variables()
tf.logging.set_verbosity(tf.logging.INFO)
trainer_lib.set_random_seed(FLAGS.random_seed)
usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
if FLAGS.use_hpu:
from habana_frameworks.tensorflow import load_habana_module
load_habana_module()
hvd = trainer.init_multinode()
if FLAGS.use_hpu:
if FLAGS.recipe_cache:
trainer.prepare_recipe_cache()
if FLAGS.use_bf16:
if not is_workaround_enabled('FORCE_FP32'):
os.environ['TF_BF16_CONVERSION'] = FLAGS.bf16_config_path
else:
print("Warning! BF16 precision is not supported in inference mode. Switching back to fp32...")
if is_workaround_enabled('DISABLE_DYNAMIC_SHAPES'):
os.environ['TF_ENABLE_DYNAMIC_SHAPES'] = 'false'
if FLAGS.score_file:
filename = os.path.expanduser(FLAGS.score_file)
if not tf.gfile.Exists(filename):
raise ValueError("The file to score doesn't exist: %s" % filename)
results = score_file(filename)
if not FLAGS.decode_to_file:
raise ValueError("To score a file, specify --decode_to_file for results.")
write_file = tf.gfile.Open(os.path.expanduser(FLAGS.decode_to_file), "w")
for score in results:
write_file.write("%.6f\n" % score)
write_file.close()
return
hp = create_hparams()
hp.add_hparam("use_hpu", FLAGS.use_hpu)
hp.add_hparam("use_horovod", FLAGS.use_horovod)
decode_hp = create_decode_hparams()
decode_hp.add_hparam("use_horovod", hp.use_horovod)
if FLAGS.use_horovod:
hp.add_hparam("hvd_worker_id", hvd.rank())
hp.add_hparam("hvd_size", hvd.size())
decode_hp.add_hparam("hvd_worker_id", hp.hvd_worker_id)
decode_hp.add_hparam("hvd_size", hp.hvd_size)
run_config = trainer.create_run_config(hp)
if FLAGS.disable_grappler_optimizations:
run_config.session_config.graph_options.rewrite_options.disable_meta_optimizer = True
assert FLAGS.use_fast_inference or not FLAGS.use_horovod, "Multinode inference is only supported with use_fast_inference=True"
# summary-hook in tf.estimator.EstimatorSpec requires
# hparams.model_dir to be set.
hp.add_hparam("model_dir", run_config.model_dir)
estimator = trainer_lib.create_estimator(
FLAGS.model,
hp,
run_config,
decode_hparams=decode_hp,
use_tpu=FLAGS.use_tpu)
decode(estimator, hp, decode_hp)
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
|