File size: 19,959 Bytes
eb49b41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2021 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
# Copyright (C) 2021-2022 Habana Labs, Ltd. an Intel Company
###############################################################################
# Changes:
# - renamed t2t_trainer.py to trainer.py
# - updated imports
# - changed default ExportSavedModelApiVersion to V2
# - removed unused flags
# - removed TPU related code
# - added no_checkpoints, deterministic_dataset, save_summary_steps, use_horovod,
# use_hpu, use_bf16, bf16_config_path flags
# - removed mtf mode handling
# - added support for horovod
# - added disable_v2_behavior and enable_resource_variables calls
# - removed mlperf log
# - removed call to tf.logging.set_verbosity
# - added support for running on GPU through horovod
# - disabled dynamic shapes by default
# - added support for recipe cache
# - added support for fast inference on HPU
# - changed the default value of the log_step_count_steps flag
# - added line tf.get_logger().propagate = False
# - added profile_steps flag
# - turned off Horovod fusion buffer for Gaudi2
# - enabled Signaling from Graph feature
"""Train and evaluate."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import os
import sys
import shutil
from TensorFlow.nlp.transformer import models # pylint: disable=unused-import
from TensorFlow.nlp.transformer.utils import problems as problems_lib # pylint: disable=unused-import
from TensorFlow.nlp.transformer.data_generators import problem # pylint: disable=unused-import
from TensorFlow.nlp.transformer.utils import contrib
from TensorFlow.nlp.transformer.utils import decoding
from TensorFlow.nlp.transformer.utils import flags as t2t_flags # pylint: disable=unused-import
from TensorFlow.nlp.transformer.utils import hparams_lib
from TensorFlow.nlp.transformer.utils import registry
from TensorFlow.nlp.transformer.utils import trainer_lib
from TensorFlow.nlp.transformer.utils import usr_dir
from TensorFlow.nlp.transformer.utils.mpi import MPI_barrier, MPI_is_distributed, MPI_world_rank
import tensorflow.compat.v1 as tf
tf.get_logger().propagate = False
flags = tf.flags
FLAGS = flags.FLAGS
# See utils/flags.py for additional command-line flags.
flags.DEFINE_string("t2t_usr_dir", None,
"Path to a Python module that will be imported. The "
"__init__.py file should include the necessary imports. "
"The imported files should contain registrations, "
"e.g. @registry.register_model calls, that will then be "
"available to the t2t-trainer.")
flags.DEFINE_integer("random_seed", None, "Random seed.")
flags.DEFINE_integer("tpu_num_shards", 8, "Number of tpu shards.")
flags.DEFINE_string("tpu_job_name", None,
"TPU job name. TPUEstimator can auto-infer this but if the "
"configuration is esoteric it should be provided here.")
flags.DEFINE_integer("iterations_per_loop", 100,
"Number of iterations in a TPU training loop.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU.")
flags.DEFINE_bool("use_tpu_estimator", False, "Whether to use TPUEstimator. "
"This is always enabled when use_tpu is True.")
flags.DEFINE_integer("export_saved_model_api_version", 2,
"ExportSavedModelApiVersion, 1 V1 or 2 (V2, default). "
"Default V2 uses model_fn_inference_on_tpu for rewrite."
"Flag use_guarantee_const is only enabled in V2.")
flags.DEFINE_bool("use_guarantee_const_getter", False,
"Whether to use GuaranteeConst Ops to mark all weights as "
"constant. It may improve TPU inference performance and "
"reduce HBM arguments usage. Only available when "
"export_saved_model_api_version=2 and use_tpu=True.")
flags.DEFINE_bool("xla_compile", False,
"Whether to use XLA to compile model_fn.")
flags.DEFINE_integer("xla_jit_level", -1,
"GlobalJitLevel to use while compiling the full graph.")
flags.DEFINE_integer("tpu_infeed_sleep_secs", None,
"How long to sleep the infeed thread.")
flags.DEFINE_bool("generate_data", False, "Generate data before training?")
flags.DEFINE_string("tmp_dir", "/tmp/t2t_datagen",
"Temporary storage directory, used if --generate_data.")
flags.DEFINE_bool("profile", False, "Profile performance?")
flags.DEFINE_string("profile_steps", None, "When to start and stop profiling")
flags.DEFINE_integer("inter_op_parallelism_threads", 0,
"Number of inter_op_parallelism_threads to use for CPU. "
"See TensorFlow config.proto for details.")
flags.DEFINE_integer("intra_op_parallelism_threads", 0,
"Number of intra_op_parallelism_threads to use for CPU. "
"See TensorFlow config.proto for details.")
# TODO(lukaszkaiser): resolve memory and variable assign issues and set to True.
flags.DEFINE_bool(
"optionally_use_dist_strat", False,
"Whether to use TensorFlow DistributionStrategy instead of explicitly "
"replicating the model. DistributionStrategy is used only if the "
"model replication configuration is supported by the DistributionStrategy.")
# To maintain compatibility with some internal libs, we guard against these flag
# definitions possibly erroring. Apologies for the ugliness.
try:
flags.DEFINE_string("master", "", "Address of TensorFlow master.")
flags.DEFINE_string("output_dir", "", "Base output directory for run.")
flags.DEFINE_string("schedule", "continuous_train_and_eval",
"Method of Experiment to run.")
flags.DEFINE_integer("eval_steps", 100,
"Number of steps in evaluation. By default, eval will "
"stop after eval_steps or when it runs through the eval "
"dataset once in full, whichever comes first, so this "
"can be a very large number.")
except: # pylint: disable=bare-except
pass
flags.DEFINE_string("std_server_protocol", "grpc",
"Protocol for tf.train.Server.")
# Hyperparameter tuning on Cloud ML Engine
# Pass an --hparams_range to enable
flags.DEFINE_string("autotune_objective", None,
"TensorBoard metric name to optimize.")
flags.DEFINE_bool("autotune_maximize", True,
"Whether to maximize (vs. minimize) autotune_objective.")
flags.DEFINE_integer("autotune_max_trials", 10,
"Maximum number of tuning experiments to run.")
flags.DEFINE_integer("autotune_parallel_trials", 1,
"How many trials to run in parallel (will spin up this "
"many jobs.")
# Note than in open-source TensorFlow, the dash gets converted to an underscore,
# so access is FLAGS.job_dir.
flags.DEFINE_string("job-dir", None,
"DO NOT USE. Exists only for Cloud ML Engine to pass in "
"during hyperparameter tuning. Overrides --output_dir.")
flags.DEFINE_integer("log_step_count_steps", 50,
"Number of local steps after which progress is printed "
"out")
flags.DEFINE_bool("gpu_automatic_mixed_precision", False,
"Whether to employ GPU automatic mixed precision training "
"(via graph rewrite and dynamic loss scaling).")
flags.DEFINE_bool("no_checkpoints", False, "If True checkpoints will not be saved")
flags.DEFINE_bool("deterministic_dataset", False, "If True dataset will be deterministic")
flags.DEFINE_integer("save_summary_steps", 100, "How often to save summaries to TensorBoard")
flags.DEFINE_bool("use_horovod", False, "Use Horovod for training")
flags.DEFINE_bool("use_hpu", False, "Use HPU for training")
flags.DEFINE_bool("use_bf16", False, "Use automatic bfloat16 conversion (HPU only)")
default_bf16_config_path = os.path.normpath(
os.path.join(os.path.realpath(__file__), '..',
'bf16_config', 'transformer.json'))
flags.DEFINE_string("bf16_config_path", default_bf16_config_path,
"Path to custom mixed precision config (in JSON format).")
flags.DEFINE_string('recipe_cache',
default='/tmp/transformer_recipe_cache/',
help='Path to recipe cache directory. Set to empty to disable recipe cache. Externally set \'TF_RECIPE_CACHE_PATH\' will override this setting.'
)
def set_hparams_from_args(args):
"""Set hparams overrides from unparsed args list."""
if not args:
return
hp_prefix = "--hp_"
tf.logging.info("Found unparsed command-line arguments. Checking if any "
"start with %s and interpreting those as hparams "
"settings.", hp_prefix)
pairs = []
i = 0
while i < len(args):
arg = args[i]
if arg.startswith(hp_prefix):
pairs.append((arg[len(hp_prefix):], args[i+1]))
i += 2
else:
tf.logging.warn("Found unknown flag: %s", arg)
i += 1
as_hparams = ",".join(["%s=%s" % (key, val) for key, val in pairs])
if FLAGS.hparams:
as_hparams = "," + as_hparams
FLAGS.hparams += as_hparams
def create_hparams():
"""Create hparams."""
hparams_path = os.path.join(FLAGS.output_dir, "hparams.json")
print(FLAGS.hparams)
return trainer_lib.create_hparams(FLAGS.hparams_set, FLAGS.hparams,
hparams_path=hparams_path)
def create_experiment_fn():
return trainer_lib.create_experiment_fn(
model_name=FLAGS.model,
problem_name=FLAGS.problem,
data_dir=os.path.expanduser(FLAGS.data_dir),
train_steps=FLAGS.train_steps,
eval_steps=FLAGS.eval_steps,
min_eval_frequency=FLAGS.local_eval_frequency,
schedule=FLAGS.schedule,
eval_throttle_seconds=FLAGS.eval_throttle_seconds,
export=FLAGS.export_saved_model,
decode_hparams=decoding.decode_hparams(FLAGS.decode_hparams),
use_tfdbg=FLAGS.tfdbg,
use_dbgprofile=FLAGS.dbgprofile,
eval_early_stopping_steps=FLAGS.eval_early_stopping_steps,
eval_early_stopping_metric=FLAGS.eval_early_stopping_metric,
eval_early_stopping_metric_delta=FLAGS.eval_early_stopping_metric_delta,
eval_early_stopping_metric_minimize=FLAGS
.eval_early_stopping_metric_minimize,
eval_timeout_mins=FLAGS.eval_timeout_mins,
eval_use_test_set=FLAGS.eval_use_test_set,
use_tpu=FLAGS.use_tpu,
use_tpu_estimator=FLAGS.use_tpu_estimator,
use_xla=FLAGS.xla_compile,
export_saved_model_api_version=FLAGS.export_saved_model_api_version,
use_guarantee_const_getter=FLAGS.use_guarantee_const_getter,
warm_start_from=FLAGS.warm_start_from,
decode_from_file=FLAGS.decode_from_file,
decode_to_file=FLAGS.decode_to_file,
decode_reference=FLAGS.decode_reference,
std_server_protocol=FLAGS.std_server_protocol,
use_horovod=FLAGS.use_horovod,
use_hpu=FLAGS.use_hpu)
def create_run_config(hp, output_dir=None):
"""Create a run config.
Args:
hp: model hyperparameters
output_dir: model's output directory, defaults to output_dir flag.
Returns:
a run config
"""
save_ckpt_steps = max(FLAGS.iterations_per_loop, FLAGS.local_eval_frequency)
save_ckpt_secs = FLAGS.save_checkpoints_secs or None
if save_ckpt_secs:
save_ckpt_steps = None
assert FLAGS.output_dir
tpu_config_extra_kwargs = {}
if FLAGS.tpu_job_name is not None:
tpu_config_extra_kwargs["tpu_job_name"] = FLAGS.tpu_job_name
model_dir = output_dir or os.path.expanduser(FLAGS.output_dir)
if FLAGS.use_horovod and model_dir:
model_dir = os.path.join(model_dir, f'worker_{hp.hvd_worker_id}')
save_checkpoints = save_ckpt_steps
if FLAGS.no_checkpoints or (FLAGS.use_horovod and hp.hvd_worker_id != 0):
save_checkpoints = None
# the various custom getters we have written do not play well together yet.
# TODO(noam): ask rsepassi for help here.
daisy_chain_variables = (
hp.daisy_chain_variables and
hp.activation_dtype == "float32" and
hp.weight_dtype == "float32")
return trainer_lib.create_run_config(
model_name=FLAGS.model,
model_dir=model_dir,
master=FLAGS.master,
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.tpu_num_shards,
log_device_placement=FLAGS.log_device_placement,
save_checkpoints_steps=save_checkpoints,
save_checkpoints_secs=save_ckpt_secs,
keep_checkpoint_max=FLAGS.keep_checkpoint_max,
keep_checkpoint_every_n_hours=FLAGS.keep_checkpoint_every_n_hours,
num_gpus=FLAGS.worker_gpu,
gpu_order=FLAGS.gpu_order,
num_async_replicas=FLAGS.worker_replicas,
gpu_mem_fraction=FLAGS.worker_gpu_memory_fraction,
enable_graph_rewriter=FLAGS.enable_graph_rewriter,
use_tpu=FLAGS.use_tpu,
use_tpu_estimator=FLAGS.use_tpu_estimator,
xla_jit_level=FLAGS.xla_jit_level,
schedule=FLAGS.schedule,
no_data_parallelism=hp.no_data_parallelism,
optionally_use_dist_strat=FLAGS.optionally_use_dist_strat,
daisy_chain_variables=daisy_chain_variables,
ps_replicas=FLAGS.ps_replicas,
ps_job=FLAGS.ps_job,
ps_gpu=FLAGS.ps_gpu,
sync=FLAGS.sync,
worker_id=FLAGS.worker_id,
worker_job=FLAGS.worker_job,
random_seed=FLAGS.random_seed,
tpu_infeed_sleep_secs=FLAGS.tpu_infeed_sleep_secs,
inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads,
log_step_count_steps=FLAGS.log_step_count_steps,
intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads,
save_summary_steps=FLAGS.save_summary_steps,
use_hpu=FLAGS.use_hpu)
def generate_data():
# Generate data if requested.
data_dir = os.path.expanduser(FLAGS.data_dir)
tmp_dir = os.path.expanduser(FLAGS.tmp_dir)
tf.gfile.MakeDirs(data_dir)
tf.gfile.MakeDirs(tmp_dir)
problem_name = FLAGS.problem
tf.logging.info("Generating data for %s" % problem_name)
registry.problem(problem_name).generate_data(data_dir, tmp_dir)
@contextlib.contextmanager
def profile_context():
if FLAGS.profile:
with contrib.tfprof().ProfileContext(
"t2tprof", trace_steps=range(100), dump_steps=range(100)) as pctx:
opts = tf.profiler.ProfileOptionBuilder.time_and_memory()
pctx.add_auto_profiling("op", opts, range(100))
yield
else:
yield
def maybe_log_registry_and_exit():
if FLAGS.registry_help:
tf.logging.info(registry.help_string())
sys.exit(0)
def is_chief():
schedules = ["train", "train_and_evaluate", "continuous_train_and_eval"]
return FLAGS.worker_id == 0 and FLAGS.schedule in schedules
def save_metadata(hparams):
"""Saves FLAGS and hparams to output_dir."""
output_dir = os.path.expanduser(FLAGS.output_dir)
if not tf.gfile.Exists(output_dir):
tf.gfile.MakeDirs(output_dir)
# Save FLAGS in txt file
if hasattr(FLAGS, "flags_into_string"):
flags_str = FLAGS.flags_into_string()
t2t_flags_str = "\n".join([
"--%s=%s" % (f.name, f.value)
for f in FLAGS.flags_by_module_dict()["TensorFlow.nlp.transformer.utils.flags"]
])
else:
flags_dict = FLAGS.__dict__["__flags"]
flags_str = "\n".join(
["--%s=%s" % (name, str(f)) for (name, f) in flags_dict.items()])
t2t_flags_str = None
flags_txt = os.path.join(output_dir, "flags.txt")
with tf.gfile.Open(flags_txt, "w") as f:
f.write(flags_str)
if t2t_flags_str:
t2t_flags_txt = os.path.join(output_dir, "flags_t2t.txt")
with tf.gfile.Open(t2t_flags_txt, "w") as f:
f.write(t2t_flags_str)
# Save hparams as hparams.json
new_hparams = hparams_lib.copy_hparams(hparams)
# Modality class is not JSON serializable so remove.
new_hparams.del_hparam("modality")
hparams_fname = os.path.join(output_dir, "hparams.json")
with tf.gfile.Open(hparams_fname, "w") as f:
f.write(new_hparams.to_json(indent=0, sort_keys=True))
def execute_schedule(exp):
if not hasattr(exp, FLAGS.schedule):
raise ValueError(
"Experiment has no method %s, from --schedule" % FLAGS.schedule)
schedule = FLAGS.schedule
if schedule == 'continuous_train_and_eval' and \
FLAGS.use_horovod and exp._hparams.hvd_worker_id != 0:
schedule = 'train'
with profile_context():
getattr(exp, schedule)()
def run_std_server():
exp = trainer_lib.T2TExperiment(*([None] * 5))
exp.run_std_server()
def prepare_recipe_cache():
# Handle recipe cache. Skip if externally set or empty.
recipe_cache = FLAGS.recipe_cache
if 'TF_RECIPE_CACHE_PATH' not in os.environ.keys() and recipe_cache:
os.environ['TF_RECIPE_CACHE_PATH'] = recipe_cache
if not MPI_is_distributed() or MPI_world_rank() == 0:
# Clear previous recipe cache.
if os.path.exists(recipe_cache) and os.path.isdir(recipe_cache):
shutil.rmtree(recipe_cache)
# Other ranks should wait for recipe cache to be removed.
MPI_barrier()
def init_multinode():
if FLAGS.use_horovod:
if FLAGS.use_hpu:
from habana_frameworks.tensorflow.habana_device import get_type
if get_type() == 'GAUDI2':
os.environ['HOROVOD_FUSION_THRESHOLD'] = "0"
import horovod.tensorflow as hvd
hvd.init()
assert hvd.is_initialized()
else:
import horovod.tensorflow as hvd
hvd.init()
assert hvd.size() > 1
os.environ['CUDA_VISIBLE_DEVICES'] = str(hvd.local_rank())
return hvd
return None
def main(argv):
tf.disable_v2_behavior()
tf.enable_resource_variables()
if FLAGS.use_hpu:
from habana_frameworks.tensorflow import load_habana_module # noqa
load_habana_module()
hvd = init_multinode()
if FLAGS.use_hpu:
if FLAGS.recipe_cache:
prepare_recipe_cache()
if FLAGS.use_bf16:
os.environ['TF_BF16_CONVERSION'] = FLAGS.bf16_config_path
dyn_shapes_flag = 'TF_ENABLE_DYNAMIC_SHAPES'
if dyn_shapes_flag not in os.environ:
os.environ[dyn_shapes_flag] = 'false'
os.environ["TF_CLUSTER_VARIABLES"] = "1"
usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
# If we just have to print the registry, do that and exit early.
maybe_log_registry_and_exit()
# Create HParams.
if argv:
set_hparams_from_args(argv[1:])
if FLAGS.schedule != "run_std_server":
hparams = create_hparams()
if FLAGS.gpu_automatic_mixed_precision:
setattr(hparams, "gpu_automatic_mixed_precision", True)
if FLAGS.deterministic_dataset:
hparams.add_hparam("deterministic_dataset", True)
hparams.add_hparam("use_horovod", FLAGS.use_horovod)
hparams.add_hparam("use_hpu", FLAGS.use_hpu)
hparams.add_hparam("profile_steps", FLAGS.profile_steps)
if FLAGS.use_horovod:
hparams.add_hparam("hvd_worker_id", hvd.rank())
hparams.add_hparam("hvd_size", hvd.size())
if FLAGS.schedule == "run_std_server":
run_std_server()
trainer_lib.set_random_seed(FLAGS.random_seed)
if FLAGS.generate_data:
generate_data()
exp_fn = create_experiment_fn()
exp = exp_fn(create_run_config(hparams), hparams)
if is_chief():
save_metadata(hparams)
from TensorFlow.common.debug import dump_callback
with dump_callback():
execute_schedule(exp)
if __name__ == "__main__":
tf.app.run()
|