File size: 3,751 Bytes
da994cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
#!/bin/bash
set -ex
data_options=" \
--vocab-file ${VOCAB_PATH} \
--merge-file ${MERGE_PATH} \
--data-path ${DATA_PATH} \
--data-impl mmap"
BASE_PATH=$PWD/dataset/
DATA_PATH=${BASE_PATH}/BookCorpusDataset_text_document
DS_CONFIG=ds_config.json
# Hostfile path
HF=/job/hostfile
# Disabling tensor/pipeline parallelism
TP=1
PP=1
# HEADS ~= HIDDEN/128
# Refer to Megatron-table in the README.md file for model sizes
# Model: 310B
#NLAYERS=96
#HIDDEN=16384
#HEADS=128
#SEQ=2048
# Model 530B
#NLAYERS=105
#HIDDEN=20480
#HEADS=160
#SEQ=2048
# Model 1T
NLAYERS=128
HIDDEN=25600
HEADS=160
SEQ=1024
MICRO_BATCH=1
NODES=1
GPN=8
GLOBAL_BATCH=$(( ${GPN} * ${MICRO_BATCH} * ${NODES} ))
# Initial power scale for loss
SP=15
# Uncomment/comment one of the following blocks.
# For 1T model, start with microbatch=1, try to get 2 and 4. If OOM w/ 4, use cpu-offloading
# Set to cpu for offloading to cpu for larger models
OFFLOAD_DEVICE="cpu"
CPU_OPTIM=" --cpu-optimizer"
# Set to none and empty string for no cpu offloading
#OFFLOAD_DEVICE="none"
#CPU_OPTIM=" "
ZERO_STAGE=3
OUTPUT_DIR=ds_z_off-${OFFLOAD_DEVICE}_stage_${ZERO_STAGE}_nl${NLAYERS}_hs${HIDDEN}_mb${MICRO_BATCH}_seq${SEQ}_gb${GLOBAL_BATCH}_nodes${NODES}
#OUTPUT_DIR=baseline_nl${NLAYERS}_hs${HIDDEN}_gb${GLOBAL_BATCH}_mb${MICRO_BATCH}
mkdir -p $OUTPUT_DIR
cat <<EOT > $DS_CONFIG
{
"train_batch_size" : $GLOBAL_BATCH,
"train_micro_batch_size_per_gpu": $MICRO_BATCH,
"steps_per_print": 1,
"gradient_accumulation_steps": 1,
"zero_optimization": {
"stage": 3,
"stage3_max_live_parameters": 3e9,
"stage3_max_reuse_distance": 3e9,
"stage3_param_persistence_threshold": 1e5,
"stage3_prefetch_bucket_size": 5e7,
"contiguous_gradients": true,
"overlap_comm": true,
"reduce_bucket_size": 90000000,
"sub_group_size": 1e9,
"offload_optimizer": {
"device": "$OFFLOAD_DEVICE",
"buffer_count": 4,
"pipeline_read": false,
"pipeline_write": false,
"pin_memory": true
}
},
"gradient_clipping": 1.0,
"fp16": {
"enabled": true,
"initial_scale_power" : $SP,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"wall_clock_breakdown": true,
"zero_allow_untested_optimizer": false,
"aio": {
"block_size": 1048576,
"queue_depth": 16,
"single_submit": false,
"overlap_events": true,
"thread_count": 2
}
}
EOT
export NCCL_DEBUG=warn
ds_args=" "
ds_args=" --deepspeed ${ds_args}"
ds_args=" --no-pipeline-parallel ${ds_args}"
ds_args=" --deepspeed_config=$DS_CONFIG ${ds_args}"
ds_args=" --zero-stage=$ZERO_STAGE ${ds_args}"
ds_args=" --deepspeed-activation-checkpointing ${ds_args}"
deepspeed --force_multi --num_nodes=$NODES --hostfile $HF pretrain_gpt.py \
--tensor-model-parallel-size $TP \
--pipeline-model-parallel-size $PP \
--num-layers $NLAYERS \
--hidden-size $HIDDEN \
--num-attention-heads $HEADS \
--seq-length $SEQ \
--loss-scale $SP \
--max-position-embeddings $SEQ \
--micro-batch-size $MICRO_BATCH \
--global-batch-size $GLOBAL_BATCH \
--train-iters 1000 \
--lr 6.0e-5 \
--min-lr 6.0e-6 \
--lr-decay-style cosine \
--log-interval 1 \
--eval-iters 40 \
--eval-interval 1000 \
--data-path $DATA_PATH \
--vocab-file $BASE_PATH/gpt2-vocab.json \
--merge-file $BASE_PATH/gpt2-merges.txt \
--save-interval 1000 \
--split 98,2,0 \
--clip-grad 1.0 \
--weight-decay 0.1 \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--init-method-std 0.006 \
--fp16 \
--checkpoint-activations \
--tensorboard-dir $OUTPUT_DIR \
$CPU_OPTIM $ds_args \
--exit-interval 5000 | tee ${OUTPUT_DIR}/output.log
|