File size: 9,620 Bytes
da994cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/bin/bash
DIR=`pwd`
###############################################################################
### Main configs
## GPT-3 models use 2K sequence length/context window
SEQ_LEN=2048

### The "GPT-3 XXX" below are configs from GPT-3 paper
### https://arxiv.org/abs/2005.14165, choose based on
### your desired model size or build your own configs

## GPT-3 Small 125M
MODEL_SIZE=0.125
NUM_LAYERS=12
HIDDEN_SIZE=768
NUM_ATTN_HEADS=12
GLOBAL_BATCH_SIZE=256
# LR=6.0e-4
LR=6.0e-5
MIN_LR=6.0e-5

# Curriculum learning (CL) enables stable large-batch training
# GLOBAL_BATCH_SIZE=16 # 8x
# LR=6e-4 # 4x

###############################################################################
### Training duration configs
## The main termination condition, original GPT-3 paper trains for 300B tokens
# TRAIN_TOKENS=300000000000
TRAIN_TOKENS=5250000000

## TRAIN_SAMPLES is another termination condition and also affect the number of 
## data samples to be indexed. Since we want to reach the TRAIN_TOKENS
## above, and techniques like curriculum learning has less token in some samples,
## so we just set this config large enough to make sure we have enough
## processed data and don't terminate by TRAIN_SAMPLES.
TRAIN_SAMPLES=$(( ${TRAIN_TOKENS} * 3 / ${SEQ_LEN} ))

## Another termination condition in minutes. Set it large enough to avoid
## undesired early termination.
EXIT_DURATION=30000000
###############################################################################
### LR configs
## LR warmup and decay duration, this token-based config is preferable since
## no need to readjust when the batch size/seqlen is changed.
## Original GPT-3 paper uses 375M warmup tokens and 260B decay tokens.
WARMUP_TOKENS=375000000
LR_DECAY_TOKENS=260000000000
###############################################################################
### Parallelism configs
## Micro batch size per GPU
## Make sure that BATCH_SIZE <= GLOBAL_BATCH_SIZE*PP_SIZE*MP_SIZE/NUM_GPUS
BATCH_SIZE=4

## Model parallelism, 1 is no MP
MP_SIZE=1

## Pipeline parallelism. To disable PP, set PP_SIZE to 1 and NO_PP to true.
PP_SIZE=1
NO_PP="true"

## ZeRO stage
ZERO_STAGE=0

## Total number of GPUs
NUM_GPUS=$(($(ds_ssh nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)-2))
NUM_GPUS_PERNODE=$(nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)
NUM_NODE=$(( ${NUM_GPUS} / ${NUM_GPUS_PERNODE} ))
DP_SIZE=$(( ${NUM_GPUS} / ${PP_SIZE} / ${MP_SIZE} ))
###############################################################################
### Curriculum learning (CL) configs
## Enable/disable CL
CL_ENABLED="false"
## Consult the tutorial https://www.deepspeed.ai/tutorials/curriculum-learning/
## for tuning the following configs
CL_START_SEQLEN=72
CL_AVG_SEQLEN=$(( (${CL_START_SEQLEN} + ${SEQ_LEN}) / 2 ))
CL_TOKENS=60
CL_STEP=$(( ${CL_TOKENS} * 1000000000 / (${GLOBAL_BATCH_SIZE} * ${CL_AVG_SEQLEN}) ))
###############################################################################
### Misc configs
LOG_INTERVAL=10
EVAL_ITERS=10
EVAL_INTERVAL=100
SAVE_INTERVAL=1000

## Standard deviation for weight initialization. Usually larger model needs
## lower std. We used a heuristic equation of sqrt(1/3/HIDDEN_SIZE) from the
## MT-NLG 530B work (https://arxiv.org/pdf/2201.11990.pdf)
INIT_STD=0.02

## Activation checkpointing saves GPU memory, but reduces training speed
# ACTIVATION_CHECKPOINT="true"
ACTIVATION_CHECKPOINT="false"

## Whether or not log optimizer states (norms, max abs values) to tensorboard.
## This is not required for training and might save GPU memory when turned off.
LOG_OPTIMIZER_STATE="true"
###############################################################################
### Output and data configs
current_time=$(date "+%Y.%m.%d-%H.%M.%S")
host="${HOSTNAME}"
NAME="125M10L_Compression_Test_INT8_64gpu_lr6e-5_tokens5.25B_nocl"
if [ "${NO_PP}" = "true" ]; then
    NAME="${NAME}-no_pp"
fi
if [ "${CL_ENABLED}" = "true" ]; then
    NAME="${NAME}-cl-startseqlen-${CL_START_SEQLEN}-step-${CL_STEP}-token-${CL_TOKENS}B"
fi

LOG_PATH="log/"
TENSORBOARD_PATH="tensorboard/${NAME}_${host}_${current_time}"
CHECKPOINT_PATH="/blob/users/zheweiyao/compression_library/checkpoint/${NAME}"
mkdir -p ${LOG_PATH}
mkdir -p ${TENSORBOARD_PATH}
mkdir -p ${CHECKPOINT_PATH}

VOCAB_PATH=/data/the_pile_public_merged_nopreprocessing/gpt2-vocab.json
MERGE_PATH=/data/the_pile_public_merged_nopreprocessing/gpt2-merges.txt
# Public the Pile dataset, can be downloaded at https://mystic.the-eye.eu/public/AI/pile_neox/
# For cluster Azure-EastUS-V100-32GB-4, Lab-RR1-V100
# DATA_PATH=/vc_data_blob/users/conglli/the_pile_public_merged_nopreprocessing/pile_text_document
# For cluster Azure-WestUS3-A100
DATA_PATH=/blob/data/the_pile_public_merged_nopreprocessing/pile_text_document
###############################################################################
data_options=" \
         --vocab-file ${VOCAB_PATH} \
         --merge-file ${MERGE_PATH} \
         --data-path ${DATA_PATH} \
         --data-impl mmap"
        
megatron_options=" \
        --override-opt_param-scheduler \
        --adam-beta1 0.9 \
        --adam-beta2 0.95 \
        --tensor-model-parallel-size ${MP_SIZE} \
        --init-method-std ${INIT_STD} \
        --lr-decay-tokens ${LR_DECAY_TOKENS} \
        --lr-warmup-tokens ${WARMUP_TOKENS} \
        --micro-batch-size ${BATCH_SIZE} \
        --exit-duration-in-mins ${EXIT_DURATION} \
        --global-batch-size ${GLOBAL_BATCH_SIZE} \
        --num-layers 10 \
        --hidden-size ${HIDDEN_SIZE} \
        --num-attention-heads ${NUM_ATTN_HEADS} \
        --seq-length ${SEQ_LEN} \
        --max-position-embeddings ${SEQ_LEN} \
        --train-tokens ${TRAIN_TOKENS} \
        --train-samples ${TRAIN_SAMPLES} \
        --lr ${LR} \
        --min-lr ${MIN_LR} \
        --lr-decay-style cosine \
        --split 98,2,0 \
        --log-interval ${LOG_INTERVAL} \
        --eval-interval ${EVAL_INTERVAL} \
        --eval-iters ${EVAL_ITERS} \
        --save-interval ${SAVE_INTERVAL} \
        --weight-decay 0.1 \
        --clip-grad 1.0 \
        --hysteresis 2 \
        --num-workers 0 \
        --fp16 \
        --load /blob/users/minjiaz/project/gpt3_distillation/checkpoint/gpt3-kd-staged-alpha1-with-pile-0.125B-lr-2.4e-3-minlr-6.0e-5-bs-2048-gpus-32-zero-0-mp-1-pp-1-no_pp-cl-startseqlen-72-step-27638-token-60B/ \
        --save ${CHECKPOINT_PATH} \
        --tensorboard-queue-size 1 \
        --log-timers-to-tensorboard \
        --log-batch-size-to-tensorboard \
        --no-load-lr-state \
        --reset-iteration \
        --log-validation-ppl-to-tensorboard \
        --tensorboard-dir ${TENSORBOARD_PATH}"

if [ "${ACTIVATION_CHECKPOINT}" = "true" ]; then
megatron_options="${megatron_options} \
        --checkpoint-activations"
fi

if [ "${LOG_OPTIMIZER_STATE}" = "true" ]; then
megatron_options="${megatron_options} \
        --log-optimizer-states-to-tensorboard"
fi

template_json="ds_config_gpt_TEMPLATE_compression.json"
config_json="ds_config_${NAME}.json"
if [[ $ZERO_STAGE -gt 0 ]]; then
sed "s/CONFIG_BATCH_SIZE/${GLOBAL_BATCH_SIZE}/" ${template_json} \
    | sed "s/CONFIG_MBSIZE/${BATCH_SIZE}/" \
    | sed "s/LOG_INTERVAL/${LOG_INTERVAL}/" \
    | sed "s/ZERO_STAGE/${ZERO_STAGE}/" \
    | sed "s/PRESCALE_GRAD/false/" \
    | sed "s/CONFIG_FP16_ENABLED/true/" \
    | sed "s/CONFIG_BF16_ENABLED/false/" \
    | sed "s/CONFIG_CL_ENABLED/${CL_ENABLED}/" \
    | sed "s/CONFIG_CL_MIN/${CL_START_SEQLEN}/" \
    | sed "s/CONFIG_CL_MAX/${SEQ_LEN}/" \
    | sed "s/CONFIG_CL_DURATION/${CL_STEP}/" \
      > ${config_json}
else
sed "s/CONFIG_BATCH_SIZE/${GLOBAL_BATCH_SIZE}/" ${template_json} \
    | sed "s/CONFIG_MBSIZE/${BATCH_SIZE}/" \
    | sed "s/LOG_INTERVAL/${LOG_INTERVAL}/" \
    | sed "s/ZERO_STAGE/${ZERO_STAGE}/" \
    | sed "s/PRESCALE_GRAD/true/" \
    | sed "s/CONFIG_FP16_ENABLED/true/" \
    | sed "s/CONFIG_BF16_ENABLED/false/" \
    | sed "s/CONFIG_CL_ENABLED/${CL_ENABLED}/" \
    | sed "s/CONFIG_CL_MIN/${CL_START_SEQLEN}/" \
    | sed "s/CONFIG_CL_MAX/${SEQ_LEN}/" \
    | sed "s/CONFIG_CL_DURATION/${CL_STEP}/" \
      > ${config_json}
fi

deepspeed_options=" \
            --deepspeed \
            --deepspeed_config ${config_json} \
            --zero-stage ${ZERO_STAGE} \
            --pipeline-model-parallel-size ${PP_SIZE}"

if [[ "${NO_PP}" = "true" ]]; then
deepspeed_options="${deepspeed_options} \
        --no-pipeline-parallel"
fi

if [ "${ACTIVATION_CHECKPOINT}" = "true" ]; then
deepspeed_options="${deepspeed_options} \
        --deepspeed-activation-checkpointing"
fi

## When saving checkpoint to a storage with cache, their could be consistency
## issue of the pointer to latest checkpoint. Here we find the correct pointer
## and broadcast it to all nodes.
ITERATION_FILE="$CHECKPOINT_PATH/latest_checkpointed_iteration.txt"
ITERATION_FILE_2="$CHECKPOINT_PATH/latest"
ITERATION=0
for (( node = 0; node <= NUM_NODE-1; node++ ))
do
    if $(ssh -q worker-"$node" "test -f \"$ITERATION_FILE\""); then
        LOCAL_ITERATION=$(ssh -q worker-"$node" cat $ITERATION_FILE)
        ITERATION=$(( ${LOCAL_ITERATION} > ${ITERATION} ? ${LOCAL_ITERATION} :  ${ITERATION} ))
    fi
done
if [[ $ITERATION -gt 0 ]]; then
    ITERATION_2="global_step${ITERATION}"
    ds_ssh "echo $ITERATION > $ITERATION_FILE"
    ds_ssh "echo $ITERATION_2 > $ITERATION_FILE_2"
fi

run_cmd="deepspeed ${DIR}/../../pretrain_gpt.py ${megatron_options} ${data_options} ${deepspeed_options} &> ${LOG_PATH}/${NAME}.log"
# run_cmd="deepspeed ${DIR}/../../pretrain_gpt.py ${megatron_options} ${data_options} ${deepspeed_options}"

echo ${run_cmd}
eval ${run_cmd}
set +x