File size: 9,620 Bytes
da994cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
#!/bin/bash
DIR=`pwd`
###############################################################################
### Main configs
## GPT-3 models use 2K sequence length/context window
SEQ_LEN=2048
### The "GPT-3 XXX" below are configs from GPT-3 paper
### https://arxiv.org/abs/2005.14165, choose based on
### your desired model size or build your own configs
## GPT-3 Small 125M
MODEL_SIZE=0.125
NUM_LAYERS=12
HIDDEN_SIZE=768
NUM_ATTN_HEADS=12
GLOBAL_BATCH_SIZE=256
# LR=6.0e-4
LR=6.0e-5
MIN_LR=6.0e-5
# Curriculum learning (CL) enables stable large-batch training
# GLOBAL_BATCH_SIZE=16 # 8x
# LR=6e-4 # 4x
###############################################################################
### Training duration configs
## The main termination condition, original GPT-3 paper trains for 300B tokens
# TRAIN_TOKENS=300000000000
TRAIN_TOKENS=5250000000
## TRAIN_SAMPLES is another termination condition and also affect the number of
## data samples to be indexed. Since we want to reach the TRAIN_TOKENS
## above, and techniques like curriculum learning has less token in some samples,
## so we just set this config large enough to make sure we have enough
## processed data and don't terminate by TRAIN_SAMPLES.
TRAIN_SAMPLES=$(( ${TRAIN_TOKENS} * 3 / ${SEQ_LEN} ))
## Another termination condition in minutes. Set it large enough to avoid
## undesired early termination.
EXIT_DURATION=30000000
###############################################################################
### LR configs
## LR warmup and decay duration, this token-based config is preferable since
## no need to readjust when the batch size/seqlen is changed.
## Original GPT-3 paper uses 375M warmup tokens and 260B decay tokens.
WARMUP_TOKENS=375000000
LR_DECAY_TOKENS=260000000000
###############################################################################
### Parallelism configs
## Micro batch size per GPU
## Make sure that BATCH_SIZE <= GLOBAL_BATCH_SIZE*PP_SIZE*MP_SIZE/NUM_GPUS
BATCH_SIZE=4
## Model parallelism, 1 is no MP
MP_SIZE=1
## Pipeline parallelism. To disable PP, set PP_SIZE to 1 and NO_PP to true.
PP_SIZE=1
NO_PP="true"
## ZeRO stage
ZERO_STAGE=0
## Total number of GPUs
NUM_GPUS=$(($(ds_ssh nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)-2))
NUM_GPUS_PERNODE=$(nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)
NUM_NODE=$(( ${NUM_GPUS} / ${NUM_GPUS_PERNODE} ))
DP_SIZE=$(( ${NUM_GPUS} / ${PP_SIZE} / ${MP_SIZE} ))
###############################################################################
### Curriculum learning (CL) configs
## Enable/disable CL
CL_ENABLED="false"
## Consult the tutorial https://www.deepspeed.ai/tutorials/curriculum-learning/
## for tuning the following configs
CL_START_SEQLEN=72
CL_AVG_SEQLEN=$(( (${CL_START_SEQLEN} + ${SEQ_LEN}) / 2 ))
CL_TOKENS=60
CL_STEP=$(( ${CL_TOKENS} * 1000000000 / (${GLOBAL_BATCH_SIZE} * ${CL_AVG_SEQLEN}) ))
###############################################################################
### Misc configs
LOG_INTERVAL=10
EVAL_ITERS=10
EVAL_INTERVAL=100
SAVE_INTERVAL=1000
## Standard deviation for weight initialization. Usually larger model needs
## lower std. We used a heuristic equation of sqrt(1/3/HIDDEN_SIZE) from the
## MT-NLG 530B work (https://arxiv.org/pdf/2201.11990.pdf)
INIT_STD=0.02
## Activation checkpointing saves GPU memory, but reduces training speed
# ACTIVATION_CHECKPOINT="true"
ACTIVATION_CHECKPOINT="false"
## Whether or not log optimizer states (norms, max abs values) to tensorboard.
## This is not required for training and might save GPU memory when turned off.
LOG_OPTIMIZER_STATE="true"
###############################################################################
### Output and data configs
current_time=$(date "+%Y.%m.%d-%H.%M.%S")
host="${HOSTNAME}"
NAME="125M10L_Compression_Test_INT8_64gpu_lr6e-5_tokens5.25B_nocl"
if [ "${NO_PP}" = "true" ]; then
NAME="${NAME}-no_pp"
fi
if [ "${CL_ENABLED}" = "true" ]; then
NAME="${NAME}-cl-startseqlen-${CL_START_SEQLEN}-step-${CL_STEP}-token-${CL_TOKENS}B"
fi
LOG_PATH="log/"
TENSORBOARD_PATH="tensorboard/${NAME}_${host}_${current_time}"
CHECKPOINT_PATH="/blob/users/zheweiyao/compression_library/checkpoint/${NAME}"
mkdir -p ${LOG_PATH}
mkdir -p ${TENSORBOARD_PATH}
mkdir -p ${CHECKPOINT_PATH}
VOCAB_PATH=/data/the_pile_public_merged_nopreprocessing/gpt2-vocab.json
MERGE_PATH=/data/the_pile_public_merged_nopreprocessing/gpt2-merges.txt
# Public the Pile dataset, can be downloaded at https://mystic.the-eye.eu/public/AI/pile_neox/
# For cluster Azure-EastUS-V100-32GB-4, Lab-RR1-V100
# DATA_PATH=/vc_data_blob/users/conglli/the_pile_public_merged_nopreprocessing/pile_text_document
# For cluster Azure-WestUS3-A100
DATA_PATH=/blob/data/the_pile_public_merged_nopreprocessing/pile_text_document
###############################################################################
data_options=" \
--vocab-file ${VOCAB_PATH} \
--merge-file ${MERGE_PATH} \
--data-path ${DATA_PATH} \
--data-impl mmap"
megatron_options=" \
--override-opt_param-scheduler \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--tensor-model-parallel-size ${MP_SIZE} \
--init-method-std ${INIT_STD} \
--lr-decay-tokens ${LR_DECAY_TOKENS} \
--lr-warmup-tokens ${WARMUP_TOKENS} \
--micro-batch-size ${BATCH_SIZE} \
--exit-duration-in-mins ${EXIT_DURATION} \
--global-batch-size ${GLOBAL_BATCH_SIZE} \
--num-layers 10 \
--hidden-size ${HIDDEN_SIZE} \
--num-attention-heads ${NUM_ATTN_HEADS} \
--seq-length ${SEQ_LEN} \
--max-position-embeddings ${SEQ_LEN} \
--train-tokens ${TRAIN_TOKENS} \
--train-samples ${TRAIN_SAMPLES} \
--lr ${LR} \
--min-lr ${MIN_LR} \
--lr-decay-style cosine \
--split 98,2,0 \
--log-interval ${LOG_INTERVAL} \
--eval-interval ${EVAL_INTERVAL} \
--eval-iters ${EVAL_ITERS} \
--save-interval ${SAVE_INTERVAL} \
--weight-decay 0.1 \
--clip-grad 1.0 \
--hysteresis 2 \
--num-workers 0 \
--fp16 \
--load /blob/users/minjiaz/project/gpt3_distillation/checkpoint/gpt3-kd-staged-alpha1-with-pile-0.125B-lr-2.4e-3-minlr-6.0e-5-bs-2048-gpus-32-zero-0-mp-1-pp-1-no_pp-cl-startseqlen-72-step-27638-token-60B/ \
--save ${CHECKPOINT_PATH} \
--tensorboard-queue-size 1 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--no-load-lr-state \
--reset-iteration \
--log-validation-ppl-to-tensorboard \
--tensorboard-dir ${TENSORBOARD_PATH}"
if [ "${ACTIVATION_CHECKPOINT}" = "true" ]; then
megatron_options="${megatron_options} \
--checkpoint-activations"
fi
if [ "${LOG_OPTIMIZER_STATE}" = "true" ]; then
megatron_options="${megatron_options} \
--log-optimizer-states-to-tensorboard"
fi
template_json="ds_config_gpt_TEMPLATE_compression.json"
config_json="ds_config_${NAME}.json"
if [[ $ZERO_STAGE -gt 0 ]]; then
sed "s/CONFIG_BATCH_SIZE/${GLOBAL_BATCH_SIZE}/" ${template_json} \
| sed "s/CONFIG_MBSIZE/${BATCH_SIZE}/" \
| sed "s/LOG_INTERVAL/${LOG_INTERVAL}/" \
| sed "s/ZERO_STAGE/${ZERO_STAGE}/" \
| sed "s/PRESCALE_GRAD/false/" \
| sed "s/CONFIG_FP16_ENABLED/true/" \
| sed "s/CONFIG_BF16_ENABLED/false/" \
| sed "s/CONFIG_CL_ENABLED/${CL_ENABLED}/" \
| sed "s/CONFIG_CL_MIN/${CL_START_SEQLEN}/" \
| sed "s/CONFIG_CL_MAX/${SEQ_LEN}/" \
| sed "s/CONFIG_CL_DURATION/${CL_STEP}/" \
> ${config_json}
else
sed "s/CONFIG_BATCH_SIZE/${GLOBAL_BATCH_SIZE}/" ${template_json} \
| sed "s/CONFIG_MBSIZE/${BATCH_SIZE}/" \
| sed "s/LOG_INTERVAL/${LOG_INTERVAL}/" \
| sed "s/ZERO_STAGE/${ZERO_STAGE}/" \
| sed "s/PRESCALE_GRAD/true/" \
| sed "s/CONFIG_FP16_ENABLED/true/" \
| sed "s/CONFIG_BF16_ENABLED/false/" \
| sed "s/CONFIG_CL_ENABLED/${CL_ENABLED}/" \
| sed "s/CONFIG_CL_MIN/${CL_START_SEQLEN}/" \
| sed "s/CONFIG_CL_MAX/${SEQ_LEN}/" \
| sed "s/CONFIG_CL_DURATION/${CL_STEP}/" \
> ${config_json}
fi
deepspeed_options=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--pipeline-model-parallel-size ${PP_SIZE}"
if [[ "${NO_PP}" = "true" ]]; then
deepspeed_options="${deepspeed_options} \
--no-pipeline-parallel"
fi
if [ "${ACTIVATION_CHECKPOINT}" = "true" ]; then
deepspeed_options="${deepspeed_options} \
--deepspeed-activation-checkpointing"
fi
## When saving checkpoint to a storage with cache, their could be consistency
## issue of the pointer to latest checkpoint. Here we find the correct pointer
## and broadcast it to all nodes.
ITERATION_FILE="$CHECKPOINT_PATH/latest_checkpointed_iteration.txt"
ITERATION_FILE_2="$CHECKPOINT_PATH/latest"
ITERATION=0
for (( node = 0; node <= NUM_NODE-1; node++ ))
do
if $(ssh -q worker-"$node" "test -f \"$ITERATION_FILE\""); then
LOCAL_ITERATION=$(ssh -q worker-"$node" cat $ITERATION_FILE)
ITERATION=$(( ${LOCAL_ITERATION} > ${ITERATION} ? ${LOCAL_ITERATION} : ${ITERATION} ))
fi
done
if [[ $ITERATION -gt 0 ]]; then
ITERATION_2="global_step${ITERATION}"
ds_ssh "echo $ITERATION > $ITERATION_FILE"
ds_ssh "echo $ITERATION_2 > $ITERATION_FILE_2"
fi
run_cmd="deepspeed ${DIR}/../../pretrain_gpt.py ${megatron_options} ${data_options} ${deepspeed_options} &> ${LOG_PATH}/${NAME}.log"
# run_cmd="deepspeed ${DIR}/../../pretrain_gpt.py ${megatron_options} ${data_options} ${deepspeed_options}"
echo ${run_cmd}
eval ${run_cmd}
set +x |