File size: 15,889 Bytes
6015caf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Megatron initialization."""

import random
import os
import time
import shutil

import numpy as np
import torch
from datetime import timedelta

from megatron import fused_kernels
from megatron import get_adlr_autoresume
from megatron import get_args
from megatron import get_tensorboard_writer
from megatron.core import mpu, tensor_parallel
from megatron.arguments import (parse_args, validate_args)
from megatron.checkpointing import load_args_from_checkpoint
from megatron.global_vars import set_global_variables
from megatron.model.transformer import bias_dropout_add_fused_train
from megatron.model.fused_bias_gelu import bias_gelu
from megatron.utils import is_rank_0
from deepspeed.accelerator import get_accelerator
import deepspeed
from deepspeed.ops.op_builder.builder import OpBuilder

is_rocm_pytorch = OpBuilder.is_rocm_pytorch()


def initialize_megatron(extra_args_provider=None, args_defaults={},
                        ignore_unknown_args=False, allow_no_cuda=False):
    """Set global variables, initialize distributed, and
    set autoresume and random seeds.
    `allow_no_cuda` should not be set unless using megatron for cpu only 
    data processing. In general this arg should not be set unless you know 
    what you are doing.
    Returns a function to finalize distributed env initialization 
    (optionally, only when args.lazy_mpu_init == True)
    """
    if not allow_no_cuda:
        # Make sure cuda is available.
        assert get_accelerator().is_available(), 'Megatron requires accelerator.'

    # Parse arguments
    args = parse_args(extra_args_provider, ignore_unknown_args)
    # Set input args.
    for key in args_defaults:
        # The args_defaults is for those who want to set default value or pass parameters when
        # calling Python functions. Instead of using arguments passed in from outside the program.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('INFO: overriding default arguments for {key}:{v} \
                    with {key}:{v2}'.format(key=key, v=getattr(args, key),
                                            v2=args_defaults[key]),
                                            flush=True)
        else:
            setattr(args, key, args_defaults[key])


    if args.use_checkpoint_args or args_defaults.get('use_checkpoint_args', False):
        assert args.load is not None, '--use-checkpoints-args requires --load argument'
        load_args_from_checkpoint(args)

    validate_args(args)
        
    # set global args, build tokenizer, and set adlr-autoresume,
    # tensorboard-writer, and timers.
    set_global_variables(args)

    # profiler config, must be done before hpu initialization
    if args.profile == 'hltv':
        os.environ['HABANA_PROFILE'] = 'profile_api_with_nics'
        shutil.rmtree('.graph_dumps', ignore_errors=True)

    # torch.distributed initialization
    def finish_mpu_init():
        args = get_args()
        # Pytorch distributed.
        _initialize_distributed()
        
        # Random seeds for reproducibility.
        if args.rank == 0:
            print('> setting random seeds to {} ...'.format(args.seed))
        _set_random_seed(args.seed, args.data_parallel_random_init)

    args = get_args()
    if  args.lazy_mpu_init:
        # TODO is this still a necessary option?
        args.use_cpu_initialization=True
        # delayed initialization of DDP-related stuff
        # We only set basic DDP globals
        mpu.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size)
        # and return function for external DDP manager
        # to call when it has DDP initialized
        mpu.set_tensor_model_parallel_rank(args.rank)
        return finish_mpu_init
    else:
        # Megatron's MPU is the master. Complete initialization right away.
        finish_mpu_init()

        # Initialize memory buffers.
        _initialize_mem_buffs()

        # Autoresume.
        _init_autoresume()

        # Compile dependencies.
        _compile_dependencies()

        # No continuation function
        return None


def _compile_dependencies():

    args = get_args()

    # =========================
    # Compile dataset C++ code.
    # =========================
    # TODO: move this to ninja
    if is_rank_0():
        start_time = time.time()
        print('> compiling dataset index builder ...')
        from megatron.data.dataset_utils import compile_helper
        compile_helper()
        print('>>> done with dataset index builder. Compilation time: {:.3f} '
              'seconds'.format(time.time() - start_time), flush=True)
        
    if not get_accelerator().device_name() == 'cuda':
        print(">fused kernel is only supported in cuda, skip loading fused kernel")
        return 

    if args.use_dataset_only:
        return
    # ==================
    # Load fused kernels
    # ==================

    # Custom kernel constraints check.
    seq_len = args.seq_length
    attn_batch_size = \
        (args.num_attention_heads / args.tensor_model_parallel_size) * \
        args.micro_batch_size
    # Constraints on sequence length and attn_batch_size to enable warp based
    # optimization and upper triangular optimization (for causal mask)
    custom_kernel_constraint = seq_len > 16 and seq_len <=4096 and \
        seq_len % 4 == 0 and attn_batch_size % 4 == 0
    # Print a warning.
    if not ((args.fp16 or args.bf16) and
            custom_kernel_constraint and
            args.masked_softmax_fusion):
        if args.rank == 0:
            print('WARNING: constraints for invoking optimized'
                  ' fused softmax kernel are not met. We default'
                  ' back to unfused kernel invocations.', flush=True)
    
    # Always build on rank zero first.
    if is_rank_0():
        start_time = time.time()
        print('> compiling and loading fused kernels ...', flush=True)
        if get_accelerator().device_count() > 0: # Skip when CPU-only
            fused_kernels.load(args)
        torch.distributed.barrier()
    else:
        torch.distributed.barrier()
        fused_kernels.load(args)
    # Simple barrier to make sure all ranks have passed the
    # compilation phase successfully before moving on to the
    # rest of the program. We think this might ensure that
    # the lock is released.
    torch.distributed.barrier()
    if is_rank_0():
        print('>>> done with compiling and loading fused kernels. '
              'Compilation time: {:.3f} seconds'.format(
                  time.time() - start_time), flush=True)


def setup_deepspeed_random_and_activation_checkpointing(args):
    '''Optional DeepSpeed Activation Checkpointing features.
    Gives access to partition activations, contiguous memory optimizations
    and cpu checkpointing.
    Activation checkpoint requires keep track of the random states
    and setting the random seed for each MP process. Megatron uses
    mpu.get_cuda_rng_tracker and mpu.model_parallel_cuda_manual_seed
    for keeping track of the random states and setting the random seeds.
    Since they are used in places outside of activation checkpointing,
    we overwrite them to maintain consistency.
    This must be called before all the calls to mpu.model_parallel_cuda_manual_seed
    '''
    num_layers = args.num_layers // args.checkpoint_num_layers
    num_layers = num_layers if args.num_layers % args.checkpoint_num_layers == 0 else num_layers + 1
    if args.split_transformers:
        num_layers *= 2

    deepspeed.checkpointing.configure(
        mpu,
        partition_activations=args.partition_activations,
        contiguous_checkpointing=args.contigious_checkpointing,
        num_checkpoints=num_layers,
        checkpoint_in_cpu=args.checkpoint_in_cpu,
        synchronize=args.synchronize_each_layer,
        profile=args.profile_backward)


def _initialize_distributed():
    """Initialize torch.distributed and core model parallel."""
    args = get_args()
    device_count = get_accelerator().device_count()
    if torch.distributed.is_initialized():

        if args.rank == 0:
            print('torch distributed is already initialized, '
                  'skipping initialization ...', flush=True)
        args.rank = torch.distributed.get_rank()
        args.world_size = torch.distributed.get_world_size()

    else:
        if args.rank == 0:
            print('> initializing torch distributed ...', flush=True)
        # Manually set the device ids.
        if device_count > 0:
            device = args.rank % device_count
            if args.local_rank is not None:
                assert args.local_rank == device, \
                    'expected local-rank to be the same as rank % device-count.'
            else:
                args.local_rank = device

            get_accelerator().set_device(device) # only do so when device_count > 0

    # Call the init process
    if args.deepspeed or args.ds_inference:
        deepspeed.init_distributed()
    else:
        if not torch.distributed.is_initialized():
            torch.distributed.init_process_group(
                backend=get_accelerator().communication_backend_name(),
                world_size=args.world_size, rank=args.rank,
                timeout=timedelta(minutes=args.distributed_timeout_minutes))

    # Set the tensor model-parallel, pipeline model-parallel, and
    # data-parallel communicators.
    if device_count > 0:
        if mpu.model_parallel_is_initialized():
            print('model parallel is already initialized')
        else:
            if args.ds_sequence_parallel_size > 1 and args.sequence_parallel:
                raise RuntimeError(
                    f"sequence_parallel_size > 1 enables DeepSpeed's sequence parallel, "
                    f"which is not compatible with Megatron-LM's sequence parallel. "
                    f"Remove --sequence_parallel to use DeepSpeed's sequence parallel."
                )

            mpu.initialize_model_parallel(args.tensor_model_parallel_size,
                                           args.pipeline_model_parallel_size,
                                           args.ds_sequence_parallel_size,
                                           args.virtual_pipeline_model_parallel_size,
                                           args.pipeline_model_parallel_split_rank,
                                           use_distributed_optimizer=args.use_distributed_optimizer)
            if args.rank == 0:
                print(f'> initialized tensor model parallel with size '
                      f'{mpu.get_tensor_model_parallel_world_size()}')
                print(f'> initialized pipeline model parallel with size '
                      f'{mpu.get_pipeline_model_parallel_world_size()}')

    if args.deepspeed and args.deepspeed_activation_checkpointing:
        setup_deepspeed_random_and_activation_checkpointing(args)


def _init_autoresume():
    """Set autoresume start time."""
    autoresume = get_adlr_autoresume()
    if autoresume:
        torch.distributed.barrier()
        autoresume.init()
        torch.distributed.barrier()


def _set_random_seed(seed_, data_parallel_random_init=False):
    """Set random seed for reproducability."""
    if seed_ is not None and seed_ > 0:
        if get_accelerator().device_count() == 0:
            # No need for CPU-only case.
            seed = seed_
        else:
            # Ensure that different pipeline MP stages get different seeds.
            seed = seed_ + (100 * mpu.get_pipeline_model_parallel_rank())
            # Ensure different data parallel ranks get different seeds
            if data_parallel_random_init:
                seed = seed + (10 * mpu.get_data_parallel_rank())
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if get_accelerator().device_count() > 0:
            tensor_parallel.model_parallel_cuda_manual_seed(seed)
    else:
        raise ValueError('Seed ({}) should be a positive integer.'.format(seed))


def write_args_to_tensorboard():
    """Write arguments to tensorboard."""
    args = get_args()
    writer = get_tensorboard_writer()
    if writer:
        for arg in vars(args):
            writer.add_text(arg, str(getattr(args, arg)),
                            global_step=args.iteration)


def _initialize_mem_buffs():
    """Initialize manually allocated static memory."""
    args = get_args()
    # Initialize memory for checkpointed activations.
    if args.distribute_checkpointed_activations:
        tensor_parallel.init_checkpointed_activations_memory_buffer()


def set_jit_fusion_options():
    """Set PyTorch JIT layer fusion options."""
    # flags required to enable jit fusion kernels
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    if ((TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)) and not is_rocm_pytorch:
        # nvfuser
        torch._C._jit_set_profiling_executor(True)
        torch._C._jit_set_profiling_mode(True)
        torch._C._jit_override_can_fuse_on_cpu(False)
        torch._C._jit_override_can_fuse_on_gpu(False)
        torch._C._jit_set_texpr_fuser_enabled(False)
        torch._C._jit_set_nvfuser_enabled(True)
        torch._C._debug_set_autodiff_subgraph_inlining(False)
    else:
        # legacy pytorch fuser
        torch._C._jit_set_profiling_mode(False)
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_override_can_fuse_on_cpu(True)
        torch._C._jit_override_can_fuse_on_gpu(True)

    _warmup_jit_function()


def _warmup_jit_function():
    """ Compilie JIT functions before the main training steps """
    args = get_args()
    if args.bf16:
        dtype = torch.bfloat16
    elif args.fp16:
        dtype = torch.float16
    else:
        dtype = torch.float32

    # Warmup fused bias+gelu
    bias = torch.rand(args.ffn_hidden_size // args.tensor_model_parallel_size,
                      dtype=dtype, device='cuda')
    input = torch.rand((args.seq_length // args.ds_sequence_parallel_size, args.micro_batch_size,
                        args.ffn_hidden_size // args.tensor_model_parallel_size),
                       dtype=dtype, device='cuda')
    # Warmup JIT fusions with the input grad_enable state of both forward
    # prop and recomputation
    for bias_grad, input_grad in zip([True, True], [False, True]):
        bias.requires_grad, input.requires_grad = bias_grad, input_grad
        for _ in range(5):
            output = bias_gelu(bias, input)
    del bias, input, output

    # Warmup fused bias+dropout+add
    if args.sequence_parallel:
        seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
    else:
        seq_length = args.seq_length
    input = torch.rand((seq_length // args.ds_sequence_parallel_size, args.micro_batch_size, args.hidden_size),
                       dtype=dtype, device='cuda')
    residual = torch.rand((seq_length // args.ds_sequence_parallel_size, args.micro_batch_size, args.hidden_size),
                          dtype=dtype, device='cuda')
    bias = torch.rand((args.hidden_size), dtype=dtype, device='cuda').expand_as(residual)
    dropout_rate = 0.1
    # Warmup JIT fusions with the input grad_enable state of both forward
    # prop and recomputation
    for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]):
        input.requires_grad = input_grad
        bias.requires_grad = bias_grad
        residual.requires_grad = residual_grad
        for _ in range(5):
            output = bias_dropout_add_fused_train(input, bias, residual, dropout_rate)
    del bias, input, residual, output
    get_accelerator().empty_cache()