File size: 15,889 Bytes
6015caf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Megatron initialization."""
import random
import os
import time
import shutil
import numpy as np
import torch
from datetime import timedelta
from megatron import fused_kernels
from megatron import get_adlr_autoresume
from megatron import get_args
from megatron import get_tensorboard_writer
from megatron.core import mpu, tensor_parallel
from megatron.arguments import (parse_args, validate_args)
from megatron.checkpointing import load_args_from_checkpoint
from megatron.global_vars import set_global_variables
from megatron.model.transformer import bias_dropout_add_fused_train
from megatron.model.fused_bias_gelu import bias_gelu
from megatron.utils import is_rank_0
from deepspeed.accelerator import get_accelerator
import deepspeed
from deepspeed.ops.op_builder.builder import OpBuilder
is_rocm_pytorch = OpBuilder.is_rocm_pytorch()
def initialize_megatron(extra_args_provider=None, args_defaults={},
ignore_unknown_args=False, allow_no_cuda=False):
"""Set global variables, initialize distributed, and
set autoresume and random seeds.
`allow_no_cuda` should not be set unless using megatron for cpu only
data processing. In general this arg should not be set unless you know
what you are doing.
Returns a function to finalize distributed env initialization
(optionally, only when args.lazy_mpu_init == True)
"""
if not allow_no_cuda:
# Make sure cuda is available.
assert get_accelerator().is_available(), 'Megatron requires accelerator.'
# Parse arguments
args = parse_args(extra_args_provider, ignore_unknown_args)
# Set input args.
for key in args_defaults:
# The args_defaults is for those who want to set default value or pass parameters when
# calling Python functions. Instead of using arguments passed in from outside the program.
if getattr(args, key) is not None:
if args.rank == 0:
print('INFO: overriding default arguments for {key}:{v} \
with {key}:{v2}'.format(key=key, v=getattr(args, key),
v2=args_defaults[key]),
flush=True)
else:
setattr(args, key, args_defaults[key])
if args.use_checkpoint_args or args_defaults.get('use_checkpoint_args', False):
assert args.load is not None, '--use-checkpoints-args requires --load argument'
load_args_from_checkpoint(args)
validate_args(args)
# set global args, build tokenizer, and set adlr-autoresume,
# tensorboard-writer, and timers.
set_global_variables(args)
# profiler config, must be done before hpu initialization
if args.profile == 'hltv':
os.environ['HABANA_PROFILE'] = 'profile_api_with_nics'
shutil.rmtree('.graph_dumps', ignore_errors=True)
# torch.distributed initialization
def finish_mpu_init():
args = get_args()
# Pytorch distributed.
_initialize_distributed()
# Random seeds for reproducibility.
if args.rank == 0:
print('> setting random seeds to {} ...'.format(args.seed))
_set_random_seed(args.seed, args.data_parallel_random_init)
args = get_args()
if args.lazy_mpu_init:
# TODO is this still a necessary option?
args.use_cpu_initialization=True
# delayed initialization of DDP-related stuff
# We only set basic DDP globals
mpu.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size)
# and return function for external DDP manager
# to call when it has DDP initialized
mpu.set_tensor_model_parallel_rank(args.rank)
return finish_mpu_init
else:
# Megatron's MPU is the master. Complete initialization right away.
finish_mpu_init()
# Initialize memory buffers.
_initialize_mem_buffs()
# Autoresume.
_init_autoresume()
# Compile dependencies.
_compile_dependencies()
# No continuation function
return None
def _compile_dependencies():
args = get_args()
# =========================
# Compile dataset C++ code.
# =========================
# TODO: move this to ninja
if is_rank_0():
start_time = time.time()
print('> compiling dataset index builder ...')
from megatron.data.dataset_utils import compile_helper
compile_helper()
print('>>> done with dataset index builder. Compilation time: {:.3f} '
'seconds'.format(time.time() - start_time), flush=True)
if not get_accelerator().device_name() == 'cuda':
print(">fused kernel is only supported in cuda, skip loading fused kernel")
return
if args.use_dataset_only:
return
# ==================
# Load fused kernels
# ==================
# Custom kernel constraints check.
seq_len = args.seq_length
attn_batch_size = \
(args.num_attention_heads / args.tensor_model_parallel_size) * \
args.micro_batch_size
# Constraints on sequence length and attn_batch_size to enable warp based
# optimization and upper triangular optimization (for causal mask)
custom_kernel_constraint = seq_len > 16 and seq_len <=4096 and \
seq_len % 4 == 0 and attn_batch_size % 4 == 0
# Print a warning.
if not ((args.fp16 or args.bf16) and
custom_kernel_constraint and
args.masked_softmax_fusion):
if args.rank == 0:
print('WARNING: constraints for invoking optimized'
' fused softmax kernel are not met. We default'
' back to unfused kernel invocations.', flush=True)
# Always build on rank zero first.
if is_rank_0():
start_time = time.time()
print('> compiling and loading fused kernels ...', flush=True)
if get_accelerator().device_count() > 0: # Skip when CPU-only
fused_kernels.load(args)
torch.distributed.barrier()
else:
torch.distributed.barrier()
fused_kernels.load(args)
# Simple barrier to make sure all ranks have passed the
# compilation phase successfully before moving on to the
# rest of the program. We think this might ensure that
# the lock is released.
torch.distributed.barrier()
if is_rank_0():
print('>>> done with compiling and loading fused kernels. '
'Compilation time: {:.3f} seconds'.format(
time.time() - start_time), flush=True)
def setup_deepspeed_random_and_activation_checkpointing(args):
'''Optional DeepSpeed Activation Checkpointing features.
Gives access to partition activations, contiguous memory optimizations
and cpu checkpointing.
Activation checkpoint requires keep track of the random states
and setting the random seed for each MP process. Megatron uses
mpu.get_cuda_rng_tracker and mpu.model_parallel_cuda_manual_seed
for keeping track of the random states and setting the random seeds.
Since they are used in places outside of activation checkpointing,
we overwrite them to maintain consistency.
This must be called before all the calls to mpu.model_parallel_cuda_manual_seed
'''
num_layers = args.num_layers // args.checkpoint_num_layers
num_layers = num_layers if args.num_layers % args.checkpoint_num_layers == 0 else num_layers + 1
if args.split_transformers:
num_layers *= 2
deepspeed.checkpointing.configure(
mpu,
partition_activations=args.partition_activations,
contiguous_checkpointing=args.contigious_checkpointing,
num_checkpoints=num_layers,
checkpoint_in_cpu=args.checkpoint_in_cpu,
synchronize=args.synchronize_each_layer,
profile=args.profile_backward)
def _initialize_distributed():
"""Initialize torch.distributed and core model parallel."""
args = get_args()
device_count = get_accelerator().device_count()
if torch.distributed.is_initialized():
if args.rank == 0:
print('torch distributed is already initialized, '
'skipping initialization ...', flush=True)
args.rank = torch.distributed.get_rank()
args.world_size = torch.distributed.get_world_size()
else:
if args.rank == 0:
print('> initializing torch distributed ...', flush=True)
# Manually set the device ids.
if device_count > 0:
device = args.rank % device_count
if args.local_rank is not None:
assert args.local_rank == device, \
'expected local-rank to be the same as rank % device-count.'
else:
args.local_rank = device
get_accelerator().set_device(device) # only do so when device_count > 0
# Call the init process
if args.deepspeed or args.ds_inference:
deepspeed.init_distributed()
else:
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(
backend=get_accelerator().communication_backend_name(),
world_size=args.world_size, rank=args.rank,
timeout=timedelta(minutes=args.distributed_timeout_minutes))
# Set the tensor model-parallel, pipeline model-parallel, and
# data-parallel communicators.
if device_count > 0:
if mpu.model_parallel_is_initialized():
print('model parallel is already initialized')
else:
if args.ds_sequence_parallel_size > 1 and args.sequence_parallel:
raise RuntimeError(
f"sequence_parallel_size > 1 enables DeepSpeed's sequence parallel, "
f"which is not compatible with Megatron-LM's sequence parallel. "
f"Remove --sequence_parallel to use DeepSpeed's sequence parallel."
)
mpu.initialize_model_parallel(args.tensor_model_parallel_size,
args.pipeline_model_parallel_size,
args.ds_sequence_parallel_size,
args.virtual_pipeline_model_parallel_size,
args.pipeline_model_parallel_split_rank,
use_distributed_optimizer=args.use_distributed_optimizer)
if args.rank == 0:
print(f'> initialized tensor model parallel with size '
f'{mpu.get_tensor_model_parallel_world_size()}')
print(f'> initialized pipeline model parallel with size '
f'{mpu.get_pipeline_model_parallel_world_size()}')
if args.deepspeed and args.deepspeed_activation_checkpointing:
setup_deepspeed_random_and_activation_checkpointing(args)
def _init_autoresume():
"""Set autoresume start time."""
autoresume = get_adlr_autoresume()
if autoresume:
torch.distributed.barrier()
autoresume.init()
torch.distributed.barrier()
def _set_random_seed(seed_, data_parallel_random_init=False):
"""Set random seed for reproducability."""
if seed_ is not None and seed_ > 0:
if get_accelerator().device_count() == 0:
# No need for CPU-only case.
seed = seed_
else:
# Ensure that different pipeline MP stages get different seeds.
seed = seed_ + (100 * mpu.get_pipeline_model_parallel_rank())
# Ensure different data parallel ranks get different seeds
if data_parallel_random_init:
seed = seed + (10 * mpu.get_data_parallel_rank())
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if get_accelerator().device_count() > 0:
tensor_parallel.model_parallel_cuda_manual_seed(seed)
else:
raise ValueError('Seed ({}) should be a positive integer.'.format(seed))
def write_args_to_tensorboard():
"""Write arguments to tensorboard."""
args = get_args()
writer = get_tensorboard_writer()
if writer:
for arg in vars(args):
writer.add_text(arg, str(getattr(args, arg)),
global_step=args.iteration)
def _initialize_mem_buffs():
"""Initialize manually allocated static memory."""
args = get_args()
# Initialize memory for checkpointed activations.
if args.distribute_checkpointed_activations:
tensor_parallel.init_checkpointed_activations_memory_buffer()
def set_jit_fusion_options():
"""Set PyTorch JIT layer fusion options."""
# flags required to enable jit fusion kernels
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
if ((TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)) and not is_rocm_pytorch:
# nvfuser
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(True)
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(True)
torch._C._debug_set_autodiff_subgraph_inlining(False)
else:
# legacy pytorch fuser
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
_warmup_jit_function()
def _warmup_jit_function():
""" Compilie JIT functions before the main training steps """
args = get_args()
if args.bf16:
dtype = torch.bfloat16
elif args.fp16:
dtype = torch.float16
else:
dtype = torch.float32
# Warmup fused bias+gelu
bias = torch.rand(args.ffn_hidden_size // args.tensor_model_parallel_size,
dtype=dtype, device='cuda')
input = torch.rand((args.seq_length // args.ds_sequence_parallel_size, args.micro_batch_size,
args.ffn_hidden_size // args.tensor_model_parallel_size),
dtype=dtype, device='cuda')
# Warmup JIT fusions with the input grad_enable state of both forward
# prop and recomputation
for bias_grad, input_grad in zip([True, True], [False, True]):
bias.requires_grad, input.requires_grad = bias_grad, input_grad
for _ in range(5):
output = bias_gelu(bias, input)
del bias, input, output
# Warmup fused bias+dropout+add
if args.sequence_parallel:
seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
else:
seq_length = args.seq_length
input = torch.rand((seq_length // args.ds_sequence_parallel_size, args.micro_batch_size, args.hidden_size),
dtype=dtype, device='cuda')
residual = torch.rand((seq_length // args.ds_sequence_parallel_size, args.micro_batch_size, args.hidden_size),
dtype=dtype, device='cuda')
bias = torch.rand((args.hidden_size), dtype=dtype, device='cuda').expand_as(residual)
dropout_rate = 0.1
# Warmup JIT fusions with the input grad_enable state of both forward
# prop and recomputation
for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]):
input.requires_grad = input_grad
bias.requires_grad = bias_grad
residual.requires_grad = residual_grad
for _ in range(5):
output = bias_dropout_add_fused_train(input, bias, residual, dropout_rate)
del bias, input, residual, output
get_accelerator().empty_cache()
|