File size: 5,161 Bytes
f457f98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
i
import math
import apex
import einops
import torch
import torch.nn.functional as F
from megatron import get_args, print_rank_0
from megatron.model.utils import get_linear_layer
from megatron.model.vision.vit_backbone import VitBackbone
from megatron.model.module import MegatronModule
from megatron.model.vision.mit_backbone import mit_b3
from megatron.model.vision.utils import resize_


class VitInpaintingModel(MegatronModule):

    def __init__(self, config, pre_process=True, post_process=True):
        super(VitInpaintingModel, self).__init__()
        args = get_args()

        self.pre_process = pre_process
        self.post_process = post_process
        self.hidden_size = config.hidden_size
        self.backbone = VitBackbone(
            config=config,
            pre_process=self.pre_process,
            post_process=self.post_process,
            class_token=False,
        )
        self.patch_dim = args.patch_dim
        self.img_h = args.img_h
        self.img_w = args.img_w
        self.seq_length = args.seq_length
        # full mask

        if self.post_process:
            self.linear_decoder = get_linear_layer(
                self.hidden_size,
                self.backbone.flatten_dim,
                torch.nn.init.zeros_,
                gather_params_on_init=args.zero_stage == 3
            )

    def set_input_tensor(self, input_tensor):
        self.backbone.set_input_tensor(input_tensor)

    def forward(self, input):

        hidden_states = self.backbone(input)

        if not self.post_process:
            return hidden_states
        decoded_output = self.linear_decoder(hidden_states)
        output = einops.rearrange(
                decoded_output,
                "b (h w) (p1 p2 c) -> b c (h p1) (w p2)",
                p1=self.patch_dim,
                p2=self.patch_dim,
                h=self.img_h//self.patch_dim,
                w=self.img_w//self.patch_dim,
            )

        return output


class MLP(torch.nn.Module):
    """
    Linear Embedding
    """
    def __init__(self, input_dim=2048, embed_dim=768):
        super().__init__()
        self.proj = torch.nn.Linear(input_dim, embed_dim)

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)
        x = self.proj(x)
        return x


class MitInpaintingModel(MegatronModule):
    """Mix vision Transformer Model."""

    def __init__(self, pre_process=True, post_process=True):
        super(MitInpaintingModel, self).__init__()
        self.pre_process = pre_process
        self.post_process = post_process

        args = get_args()
        self.patch_dim = args.patch_dim
        self.img_h = args.img_h
        self.img_w = args.img_w
        self.flatten_dim = self.patch_dim * self.patch_dim * 3
        self.backbone = mit_b3()

        self.in_channels = [64, 128, 320, 512]
        self.embedding_dim = 768

        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels

        self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=self.embedding_dim)
        self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=self.embedding_dim)
        self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=self.embedding_dim)
        self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=self.embedding_dim)

        self.conv_fuse = torch.nn.Conv2d(self.embedding_dim*4, self.embedding_dim, 1, 1, bias=False)
        self.norm = apex.parallel.SyncBatchNorm(self.embedding_dim)
        self.dropout = torch.nn.Dropout2d(0.1)
        
        self.linear_pred = torch.nn.Conv2d(self.embedding_dim, self.flatten_dim, kernel_size=1)
    
    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
        pass

    def forward(self, input):
        c1, c2, c3, c4 = self.backbone(input)

        n, _, h, w = c4.shape
        _c4 = self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3])
        _c4 = resize(_c4, size=c1.size()[2:], mode='bilinear', align_corners=False)
    
        _c3 = self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3])
        _c3 = resize(_c3, size=c1.size()[2:], mode='bilinear', align_corners=False)

        _c2 = self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3])
        _c2 = resize(_c2, size=c1.size()[2:], mode='bilinear', align_corners=False)

        _c1 = self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3])

        _c = torch.cat([_c4, _c3, _c2, _c1], dim=1)
        _c = self.conv_fuse(_c)
 
        x = self.norm(_c)
        x = F.relu(x, inplace=True)
        x = self.dropout(x)

        x = self.linear_pred(x)

        output = einops.rearrange(
            x,
            "b (c p1 p2) h w -> b c (h p1) (w p2)",
            p1=self.patch_dim,
            p2=self.patch_dim,
            h=self.img_h//self.patch_dim,
            w=self.img_w//self.patch_dim,
        )

        return output