File size: 44,774 Bytes
7300ed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

"""Megatron distributed optimizer."""

from deepspeed.accelerator import get_accelerator
if get_accelerator().device_name() == 'cuda':
    from apex.optimizers import FusedAdam as Adam
else:
    from torch.optim import Adam

import math
import torch
from packaging import version

from megatron import get_args
from megatron import get_timers
from megatron import print_rank_0
from megatron.core import mpu, tensor_parallel
from megatron.model.module import param_is_not_shared

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper


class Range:
    """
    A range represents a start and end points for indexing a shard
    from a full tensor.
    """
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Range(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)
    def __len__(self):
        return self.end - self.start


class DistributedOptimizer(MixedPrecisionOptimizer):
    """Distributed optimizer, for all data types (fp16, bf16, and fp32).

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        use_contiguous_buffers_in_local_ddp: if true, the local DDP model
            is using a contiguous buffer to hold the model grads.
        fp16: if true, the model is running in fp16.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
        models: list of models (i.e., the virtual pipelining models). This
            is used by the distributed optimizer for mapping parameters.
    """

    @classmethod
    def build_model_gbuf_param_range_map(cls, model, dtype, gbuf_world_range):
        """
        Build mapping from param reference to grad buffer shard ranges.

        This method builds a mapping from parameter references to grad
        buffer shard ranges, specific to each data-parallel (DP) rank's
        set of 'owned' parameters. Each grad buffer (padded to be an even
        multiple of DP-world-size) is conceptually divided into DP-world-size
        contiguous regions, where each DP rank 'owns' a contiguous regions.
        Ownership in this sense means DP rank is responsible for reducing
        the relevant subset of grads, and updating the relevant subset of
        params.

        This conceptual partitioning of the grad buffer does NOT respect
        parameter boundaries, and as such it is assumed that each created
        range references a shard (or subset) of the full parameter. It is
        easiest to think of each DP rank as operating (i.e., reducing,
        gathering) purely on views into the grad buffer, for all model-to-
        main & main-to-model operations.

        This method creates three ranges:
        - The param's range within the entire grad buffer (i.e., world index).
        - The param's range within the DP rank's local view of the grad buffer.
        - The param's range within itself (i.e., its shard).
        """

        # Param range map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
        param_range_map = {}
        for param, param_world_indexes in param_world_index_map.items():

            # Param range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
                param_world_start - gbuf_world_range.start)
            param_local_end = min(
                gbuf_world_range.size,
                param_world_end - gbuf_world_range.start)

            # Add param, if within local gbuf range.
            if param_local_end > param_local_start:
                param_local_range = Range(param_local_start, param_local_end)
                param_world_range = param_local_range.normalize(
                    param_local_start + gbuf_world_range.start)
                sub_param_start = max(0, gbuf_world_range.start-param_world_start)
                sub_param_range = param_local_range.normalize(sub_param_start)
                param_range_map[param] = {
                    "gbuf_world" : param_world_range,
                    "gbuf_local" : param_local_range,
                    "param" : sub_param_range,
                }

        return param_range_map


    @classmethod
    def build_model_gbuf_range(cls, model, dtype):
        """
        Build mapping between params and their grad buffers.

        This method does the initial setup for the method above. This setup
        includes determining the shard ranges into the DDP's grad buffer for
        each data-parallel (DP) rank. Each DP rank keeps range info for
        all other DP ranks, for the purpose of creating args for
        reduce-scatter and all-gather.
        """

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer range.
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))

        # All world ranges. (i.e., across all data parallel ranks)
        gbuf_world_all_ranges = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_range_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
            gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_ranges.append(gbuf_world_range)

        # Local DP's ranges.
        gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
        gbuf_local_range = gbuf_world_range.normalize()

        # Get each param's ranges.
        param_range_map = cls.build_model_gbuf_param_range_map(model,
                                                               dtype,
                                                               gbuf_world_range)

        # Group into dict.
        data = {
            "local" : gbuf_local_range,
            "world" : gbuf_world_range,
            "world_all" : gbuf_world_all_ranges,
            "param_map" : param_range_map,
            "max_range_size" : max_gbuf_range_size,
        }

        return data


    @classmethod
    def build_model_gbuf_range_map(cls, model):
        """
        Create param-to-grad-buffer mappings, for grad buffer data types
        within a specific virtual model.
        """
        return {
            dtype : cls.build_model_gbuf_range(model, dtype)
            for dtype in model._grad_buffers
        }


    @classmethod
    def build_model_param_gbuf_map(cls, model_gbuf_ranges):
        """
        Create a reverse of the model_gbuf_ranges, for referencing in
        opposite direction.
        """
        param_gbuf_map = {}
        for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param, param_range_map in gbuf_range_map["param_map"].items():
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map


    @classmethod
    def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
        """
        Create optimizer groups.

        Given the set of parameter shard ranges that are owned by the current
        data-parallel (DP) rank, gather the set of parameters that will be
        used (in the method below) to create the current DP's optimizer
        groups.
        """

        num_groups = len(param_groups)

        # Param group map.
        # World param group map.
        # - Store a mapping of <model_parameter:group_index> for all parameters
        #   across all DP ranks. This is necessary because it is our first
        #   cross reference between the DDP mappings and the optimizer group
        #   parameters. This mapping only for use in the next step of building
        #   the local mapping over this DP rank's parameters.
        world_param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                world_param_group_map[param] = group_index

        # Optimizer group ranges & param-group mapping.
        # - Build a mapping from groups to their contained parameters, and also
        #   from parameters to their containing group index and order within
        #   the group. The group index and order are particularly important for
        #   saving and loading checkpoints.
        local_param_group_map = {}
        group_ranges = [ {"params": []} for _ in param_groups ]
        for model_gbuf_range_map in model_gbuf_ranges:
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param in gbuf_range_map["param_map"]:
                    group_index = world_param_group_map[param]
                    group_range = group_ranges[group_index]
                    group_range["params"].append(param)
                    local_param_group_map[param] = \
                        (group_index, len(group_range["params"]) - 1)

        # Squeeze zero-size group ranges.
        for group_index, group_range in enumerate(group_ranges):
            group_range["orig_group"] = param_groups[group_index]
            group_range["orig_group_idx"] = param_groups[group_index]

        return local_param_group_map, group_ranges


    @classmethod
    def build_model_and_main_param_groups(cls,
                                          model_gbuf_ranges,
                                          param_gbuf_map,
                                          opt_group_ranges):
        """
        Create main parameter groups needed for the optimizer step.

        These groups encompass both: 1) groups used by this class, for
        reducing/gather, and 2) groups used by the inner optimizer for the
        parameter update. Given that the conceptual grad buffer partitioning
        (created in earlier method) doesn't respect parameter boundaries,
        the optimizer operates on shards of the model parameters, rather than
        the full parameters.
        """

        # Parameter groups:
        #   model_float16_groups: original float16 parameters
        #   model_fp32_groups: original fp32 parameters
        #   shard_float16_groups: shards of original float16 parameters
        #   shard_fp32_groups: shards of original fp32 parameters
        #   shard_fp32_from_float16_groups: fp32 copy of float16 parameters
        model_float16_groups = []
        model_fp32_groups = []
        shard_float16_groups = []
        shard_fp32_groups = []
        shard_fp32_from_float16_groups = []

        # Allocate (or slice) each group's param shard.
        for group_index, group_range in enumerate(opt_group_ranges):

            # Params of this group.
            model_float16_params_this_group = []
            model_fp32_params_this_group = []
            shard_float16_params_this_group = []
            shard_fp32_params_this_group = []
            shard_fp32_from_float16_params_this_group = []
            model_float16_groups.append(model_float16_params_this_group)
            model_fp32_groups.append(model_fp32_params_this_group)
            shard_float16_groups.append(shard_float16_params_this_group)
            shard_fp32_groups.append(shard_fp32_params_this_group)
            shard_fp32_from_float16_groups.append(
                shard_fp32_from_float16_params_this_group)

            for model_param in group_range["params"]:

                assert model_param.requires_grad

                model_index, dtype = param_gbuf_map[model_param]
                gbuf_range = model_gbuf_ranges[model_index][dtype]
                param_range = gbuf_range["param_map"][model_param]["param"]

                # fp16, bf16 params.
                if model_param.type() in ['torch.cuda.HalfTensor',
                                          'torch.cuda.BFloat16Tensor']:

                    # Clone model -> main.
                    shard_model_param = model_param.detach().view(-1) \
                        [param_range.start:param_range.end]
                    shard_main_param = shard_model_param.clone().float()
                    tensor_parallel.copy_tensor_model_parallel_attributes(
                        shard_model_param, model_param)
                    tensor_parallel.copy_tensor_model_parallel_attributes(
                        shard_main_param, model_param)
                    if hasattr(model_param, 'shared'):
                        shard_model_param.shared = model_param.shared
                        shard_main_param.shared = model_param.shared

                    # Add to group.
                    model_float16_params_this_group.append(model_param)
                    shard_float16_params_this_group.append(shard_model_param)
                    shard_fp32_from_float16_params_this_group.append(shard_main_param)

                # fp32 params.
                elif model_param.type() == 'torch.cuda.FloatTensor':
                    shard_model_param = model_param.view(-1) \
                        [param_range.start:param_range.end]
                    model_fp32_params_this_group.append(model_param)
                    shard_fp32_params_this_group.append(shard_model_param)
                    tensor_parallel.copy_tensor_model_parallel_attributes(
                        shard_model_param, model_param)
                    if hasattr(model_param, 'shared'):
                        shard_model_param.shared = model_param.shared

                else:
                    raise TypeError('Wrapped parameters must be one of '
                                    'torch.cuda.FloatTensor,  '
                                    'torch.cuda.HalfTensor, or '
                                    'torch.cuda.BFloat16Tensor. '
                                    'Received {}'.format(param.type()))

            # Update optimizer's params.
            group_range["orig_group"]["params"] = [
                *shard_fp32_params_this_group,
                *shard_fp32_from_float16_params_this_group,
            ]

        return (
            model_float16_groups,
            model_fp32_groups,
            shard_float16_groups,
            shard_fp32_groups,
            shard_fp32_from_float16_groups,
        )


    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 fp16, bf16, params_dtype, grad_scaler, models):
        """
        See top of class definition for argument descriptions.

        The steps in this method create the core mapping between DDP grad
        buffers, parameters, and parameter shard ranges, that is needed for
        converting between model param indexes and main parameter shard
        indexes. This method also updates the optimizer parameter groups
        with the newly created shards.
        """

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            fp16, bf16, params_dtype, grad_scaler, models)

        # Verify that contiguous buffers are being used.
        # - Note: this should already be checked in arguments.py.
        assert use_contiguous_buffers_in_local_ddp
        assert isinstance(optimizer, Adam), \
            "Only Adam currently supported, due to checkpointing requirements."

        # Model grad buffer ranges.
        self.model_gbuf_ranges = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
        self.model_param_gbuf_map = \
            self.build_model_param_gbuf_map(self.model_gbuf_ranges)

        # Optimizer ranges.
        self.model_param_group_index_map, self.opt_group_ranges = \
            self.build_optimizer_group_ranges(self.optimizer.param_groups,
                                              self.model_gbuf_ranges)
        
        # Allocate main param shards.
        (
            self.model_float16_groups,
            self.model_fp32_groups,
            self.shard_float16_groups,
            self.shard_fp32_groups,
            self.shard_fp32_from_float16_groups,
        ) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
                                                   self.model_param_gbuf_map,
                                                   self.opt_group_ranges)

        # Initialize param buffers.
        # - These are views on the DDP model's grad buffers, that share
        #   storage & have their own dtype. This is safe because the param
        #   dtype size is always <= grad dtype size.
        self.param_buffers = []
        for model_index, model in enumerate(self.models):
            current_param_buffers = {}
            for dtype, grad_buffer in model._grad_buffers.items():

                # Handle older/newer method for getting untyped storage.
                try:
                    storage = grad_buffer.data.storage()._untyped()
                except:
                    storage = grad_buffer.data.storage().untyped()

                # Typed param buffer.
                param_buffer = torch.tensor(
                    storage,
                    dtype = params_dtype,
                    device = grad_buffer.data.device)
                param_buffer = param_buffer[:grad_buffer.numel_padded]
                current_param_buffers[dtype] = param_buffer
            self.param_buffers.append(current_param_buffers)

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_ranges ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def get_model_param_range_map(self, param):
        """
        Given a model param, get the index sub-range of the param that this
        data-parallel rank owns.
        """
        model_index, dtype = self.model_param_gbuf_map[param]
        gbuf_range_map = self.model_gbuf_ranges[model_index][dtype]
        param_range_map = gbuf_range_map["param_map"][param]
        return param_range_map


    def get_model_parallel_group(self):
        """
        With the distributed optimizer, the model parallel group is the
        entire world.
        """
        return None


    def state_dict(self):
        """
        The state dict contains all non-DP-rank-dependent (i.e., non-parameter-
        related) optimizer variables. The returned state dict can be stored in
        the standard model/RNG checkpoint file. The parameter and dependent
        optimizer state (e.g., exp_avg, exp_avg_sq) are stored in a separate
        checkpoint file by calling 'save_parameter_state()'.
        """

        state_dict = {}

        # Optimizer state (do not store parameter state here).
        state_dict['optimizer'] = {
            k : v
            for k, v in self.optimizer.state_dict().items()
            if k != "state"
        }
        for param_group in state_dict["optimizer"]["param_groups"]:
            del param_group["params"]

        # Grad scaler state.
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()

        return state_dict


    def load_state_dict(self, state_dict):
        """Load the state dict.

        As detailed in state_dict(), the state dict contains all non-
        parameter-related variables. This method is notably longer than
        state_dict(), because the Torch optimizers state has yet to be
        allocated at this point, and so we must do a cross referencing between
        the optimizers state (and the ordering it expects for parameter state)
        and this DP rank's shards. The optimizer at this point does not contain
        any tensor dimension information, so we must get these dimensions from
        the DP shards mapped during DistributedOptimizer.__init__().

        The tensor parameter state is loaded via load_parameter_state(), and
        so this method also must populate the loaded state dict with dummy
        tensor data (i.e., via torch.empty() below). This will be overwritten
        during load_parameter_state().

        ** Note: Torch optimizer's state structure. **
        The Torch optimizer stores its state in two levels. The top level is a
        list of groups, where each group contains a list of integer indexes
        (corresponding to parameters) that index into a master parameter list
        that is shared by all groups. As such, three values are necessary for
        maintaining this ordering:

        - group_index : The group to which a parameter belongs.
        - group_order : The index of a parameter within its group.
        - state_order : The index of a parameter within the shared parameter
            list.
        """

        # Get the Torch optimizer's state dict.
        # - This 'inner' optimizer at this point is unallocated, and only
        #   contains an integer odering of parameters within each group, and
        #   the ordering of parameters within its flattened parameter state
        #   list.
        inner_state_dict = self.optimizer.state_dict()
        state_dict_param_groups = [{
            **group,
            "params" : list(inner_state_dict["param_groups"][idx]["params"]),
        } for idx, group in enumerate(state_dict["optimizer"]["param_groups"])]

        # Allocate 'dummy' data for optimizer state (i.e., torch.empty() below)
        # - Real data is overwritten during load_parameter_state().
        state_dict_state = []
        for gbuf_range_maps in self.model_gbuf_ranges:
            for gbuf_range_map in gbuf_range_maps.values():
                for model_param, param_range_map in \
                    gbuf_range_map["param_map"].items():

                    # Get parameter ordering information (see method docstring
                    # for details).
                    group_index, group_order = \
                        self.model_param_group_index_map[model_param]
                    state_order = inner_state_dict["param_groups"] \
                        [group_index]["params"][group_order]

                    # Allocate dummy tensors.
                    numel = len(param_range_map["gbuf_world"])
                    init_shard = lambda : torch.empty(
                        (numel,),
                        dtype=torch.float32,
                        device=torch.cuda.current_device())

                    state_dict_state.append((state_order, {
                        "exp_avg" : init_shard(),
                        "exp_avg_sq" : init_shard(),
                    }))

        # Sort by state order (see method docstring for details).
        state_dict_state.sort(key = lambda s : s[0])
        state_dict_state = {s[0]:s[1] for s in state_dict_state}

        # Optimizer.
        self.optimizer.load_state_dict({
            "state" : state_dict_state,
            "param_groups" : state_dict_param_groups,
        })

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            if self.fp16:
                print_rank_0('***WARNING*** found an old checkpoint, will not '
                             'load grad scaler ...')
        else:
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')


    def save_parameter_state(self, filename):
        """Save parameter state (i.e., parameter & optimizer tensors).

        This method performs three steps:
        - For each DP rank, copy param & optimizer shards to contiguous CPU
          buffers. (e.g., one buffer each for main_param, exp_avg, and
          exp_avg_sq).
        - Gather contiguous buffers on DP rank 0 and concatenate to world
          buffers.
        - Save world buffers to disk (i.e., distrib_opt.pt).
        """

        # Data parallelism variables.
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group_gloo = mpu.get_data_parallel_group_gloo()
        data_parallel_global_ranks = list(mpu._DATA_PARALLEL_GLOBAL_RANKS)

        # Collect param states.
        state = {}
        for model_idx, gbuf_range_maps in enumerate(self.model_gbuf_ranges):

            # Iterate grad buffers (by data type).
            dtype_state = {}
            assert len(gbuf_range_maps) == 1, "single dtype supported, for now."
            for dtype, gbuf_range_map in gbuf_range_maps.items():

                # Compute local DP contiguous shard's size.
                model = self.models[model_idx]
                gbuf_world_numel = model._grad_buffers[dtype].numel_padded
                gbuf_local_numel = int(gbuf_world_numel/data_parallel_world_size)
                local_shards = {key:torch.empty((gbuf_local_numel,),
                                             dtype=torch.float32,
                                             device="cpu")
                             for key in ("param", "exp_avg", "exp_avg_sq")}

                # Build contiguous DP rank shards (for param + optim states).
                for model_param, param_range_map in \
                    gbuf_range_map["param_map"].items():

                    # Main param & optimizer states.
                    group_index, group_order = \
                        self.model_param_group_index_map[model_param]
                    main_param = self.optimizer.param_groups \
                        [group_index]["params"][group_order]
                    optim_state = self.optimizer.state[main_param]

                    tensors = {
                        "param" : main_param,
                        **optim_state,
                    }

                    # Copy states into contiguous shard.
                    gbuf_local_start = param_range_map["gbuf_local"].start
                    gbuf_local_end = param_range_map["gbuf_local"].end
                    for key in local_shards:
                        local_shards[key][gbuf_local_start:gbuf_local_end] \
                            .data.copy_(tensors[key].detach().cpu())

                # Gather contiguous shards on DP rank 0.
                world_tensors = {}
                for key, send_tensor in local_shards.items():
                    
                    # Gather tensor list.
                    if data_parallel_rank == 0:
                        recv_tensors = [torch.empty((gbuf_local_numel,),
                                                    dtype=torch.float32,
                                                    device="cpu")
                                        for _ in range(data_parallel_world_size)]
                    else:
                        recv_tensors = None

                    # Gather.
                    torch.distributed.gather(
                        send_tensor,
                        recv_tensors,
                        data_parallel_global_ranks[0],
                        data_parallel_group_gloo,
                    )

                    # Concatenate.
                    if data_parallel_rank == 0:
                        world_tensors[key] = torch.cat(recv_tensors)

                # Collect world state.
                dtype_state[dtype] = world_tensors
            state[model_idx] = dtype_state

        # Save param state.
        if data_parallel_rank == 0:
            torch.save(state, filename)


    def load_parameter_state(self, filename):
        """Load parameter state (i.e., parameter & optimizer tensors).

        This method performs the reverse of save_parameter_state():
        - Load world buffers from disk (i.e., distrib_opt.pt).
        - Scatter contiguous buffers from DP rank 0 to each DP rank (each DP
          rank receives its relevant subset of the world buffers).
        - For each DP rank, copy param & optimizer shards from contiguous CPU
          buffers. (e.g., one buffer each for main_param, exp_avg, and
          exp_avg_sq).
        """

        # Data parallelism variables.
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group_gloo = mpu.get_data_parallel_group_gloo()
        data_parallel_global_ranks = list(mpu._DATA_PARALLEL_GLOBAL_RANKS)

        # Load on DP rank 0.
        if data_parallel_rank == 0:
            loaded_state = torch.load(filename)

        # Scatter tensors to all DP ranks.
        for model_idx, gbuf_range_maps in enumerate(self.model_gbuf_ranges):
            for dtype, gbuf_range_map in gbuf_range_maps.items():

                # Compute local DP contiguous shard's size.
                model = self.models[model_idx]
                gbuf_world_numel = model._grad_buffers[dtype].numel_padded
                gbuf_local_numel = int(gbuf_world_numel/data_parallel_world_size)

                # Contiguous local shards (received from DP rank 0).
                local_shards = {key:torch.empty((gbuf_local_numel,),
                                                dtype=torch.float32,
                                                device="cpu")
                                for key in ("param", "exp_avg", "exp_avg_sq")}

                # Scatter local shards from DP rank 0.
                for key, recv_tensor in local_shards.items():
                    
                    # Scatter tensor list.
                    if data_parallel_rank == 0:
                        world_tensor = loaded_state[model_idx][dtype][key]
                        gbuf_start_idxs = \
                            list(range(0, gbuf_world_numel, gbuf_local_numel))
                        send_tensors = [world_tensor[i:(i+gbuf_local_numel)]
                                        for i in gbuf_start_idxs]
                    else:
                        send_tensors = None

                    # Scatter.
                    torch.distributed.scatter(
                        recv_tensor,
                        send_tensors,
                        data_parallel_global_ranks[0],
                        data_parallel_group_gloo,
                    )

                # Copy local contiguous shards to param/optim shards.
                for model_param, param_range_map in \
                    gbuf_range_map["param_map"].items():

                    # Main param & optimizer states.
                    group_index, group_order = \
                        self.model_param_group_index_map[model_param]
                    main_param = self.optimizer.param_groups \
                        [group_index]["params"][group_order]
                    optim_state = self.optimizer.state[main_param]

                    tensors = {
                        "param" : main_param,
                        **optim_state,
                    }

                    # Copy states into contiguous shard.
                    gbuf_local_start = param_range_map["gbuf_local"].start
                    gbuf_local_end = param_range_map["gbuf_local"].end
                    for key in local_shards:
                        tensors[key].data.copy_(
                            local_shards[key][gbuf_local_start:gbuf_local_end])


    def zero_grad(self, set_to_none=True):
        """
        Zero grads.

        We only need to zero the model related parameters, i.e.,
        model_float16_groups & model_fp32_groups. We additionally zero
        the remaining groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point.
        """
        for groups in (
                self.model_float16_groups,
                self.model_fp32_groups,
                self.shard_float16_groups, # grad empty/unused here?
                self.shard_fp32_groups, # throws grad-access warning
                self.shard_fp32_from_float16_groups):
            for group in groups:
                _zero_grad_group_helper(group, set_to_none)


    @staticmethod
    def get_model_buffer_dp_views(model_buffers):
        """
        Get shard views of each of the DDP's param/grad buffers.

        In this nested list, the top level is grouped by the virtual model
        index and the buffer's data type. The sub-level is a list of
        shards of that buffer, where each shard in the list represents
        a contiguous view of the buffer, that is owned by a data-parallel
        rank. The shard boundary does not respect parameter boundaries, and
        so the elements of some parameters are split across data parallel
        ranks.

        Additionally, return references to the entire buffers, for use
        in _reduce_scatter_base and all_gather_into_tensor.
        """

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Buffer views.
        view_items = []
        for model_index, buffers in enumerate(model_buffers):
            for dtype, buf in buffers.items():

                assert buf.numel() % data_parallel_world_size == 0
                shard_size = int(buf.numel() / data_parallel_world_size)
                buf_views = [buf[(r*shard_size):((r+1)*shard_size)]
                             for r in range(data_parallel_world_size)]
                view_items.append((model_index, dtype, buf, buf_views))

        return view_items


    def get_model_grad_buffer_dp_views(self):
        return self.get_model_buffer_dp_views([
            {dtype : mem_buffer.data}
            for model in self.models
            for dtype, mem_buffer in model._grad_buffers.items()])


    def get_model_param_buffer_dp_views(self):
        return self.get_model_buffer_dp_views(self.param_buffers)


    def reduce_model_grads(self, args, timers):
        """
        Reduce-scatter model grads.

        The DDP's grad buffer is used for the reduce-scatter, and thus no
        tensors are dynamically allocated.

        Note: this is a different order of reduction, versus the non-
        distributed optimizer, which reduces: 1) layernorm grads, 2) all
        grads, 3) embedding grads.
        """

        # All-reduce layer-norm grads (for sequence parallelism).
        timers('layernorm-grads-all-reduce', log_level=1).start(
            barrier=args.barrier_with_L1_time)
        self.allreduce_layernorm_grads(args)
        timers('layernorm-grads-all-reduce').stop()

        # All-reduce embedding grads.
        timers('embedding-grads-all-reduce', log_level=1).start(
            barrier=args.barrier_with_L1_time)
        self.allreduce_embedding_grads(args)
        timers('embedding-grads-all-reduce').stop()

        # Reduce-scatter setup.
        timers('grads-reduce-scatter', log_level=1).start(
            barrier=args.barrier_with_L1_time)
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

        # Reduce-scatter all grads.
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
        for index, (model_index, dtype, gbuf, gbuf_views) \
            in enumerate(gbuf_view_items):

            torch.distributed._reduce_scatter_base(
                gbuf_views[data_parallel_rank],
                gbuf,
                group = data_parallel_group,
            )

        timers('grads-reduce-scatter').stop()


    def gather_model_params(self, args, timers):
        """
        All-gather updated model params.

        The DDP's param buffer is used for the all-gather, and thus no
        tensors are dynamically allocated. After the all-gather, the params
        can be copied from the param buffer to the param.
        """

        timers('params-all-gather', log_level=1).start(
            barrier=args.barrier_with_L1_time)

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        # All-gather updated main params.
        # - All param buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, due to grad buffer padding that is
        #   done in distributed.py, and extended to the param buffers. Thus,
        #   all sub-views will have consistent start/end indexes across data
        #   parallel ranks.
        pbuf_view_items = self.get_model_param_buffer_dp_views()
        for index, (model_index, dtype, pbuf, pbuf_views) \
            in enumerate(pbuf_view_items):

            if version.parse(torch.__version__) >= version.parse('1.13'):
                torch.distributed.all_gather_into_tensor(
                    pbuf,
                    pbuf_views[data_parallel_rank],
                    group = data_parallel_group,
                )
            else:
                torch.distributed._all_gather_base(
                    pbuf,
                    pbuf_views[data_parallel_rank],
                    group = data_parallel_group,
                )

        # Copy from param buffer to each param.
        for model_id, model in enumerate(self.models):
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param, (buf_start, buf_end) in param_map.items():
                    param_buf = self.param_buffers[model_id][dtype]
                    param_buf_shard = param_buf[buf_start:buf_end]
                    param.view(-1).detach().copy_(param_buf_shard)

        timers('params-all-gather').stop()


    def _collect_main_grad_data_for_unscaling(self):
        """
        Note: this should be equivalent to the float-16 optimizer's method,
        but writtent differently, so the two should be combined.
        """
        return [
            param.grad.data
            for group in self.optimizer.param_groups
            for param in group["params"]
        ]


    def _get_model_and_main_params_data_float16(self):
        """
        Get aligned list of model and main params.
        """
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.shard_float16_groups,
                                           self.shard_fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data


    def _copy_model_grads_to_main_grads(self):
        """
        Copy model grads to main grads.

        Since this step follows a reduce-scatter through the DDP's grad
        buffer, this method is responsible for copying the updated grads
        from the grad buffer to the main shard's grad field.
        """

        # Utility method for copying group grads.
        def copy_group_grads(model_groups, shard_main_groups):
            for model_group, shard_main_group in zip(model_groups,
                                                     shard_main_groups):
                for model_param, shard_main_param in zip(model_group,
                                                         shard_main_group):

                    param_range_map = self.get_model_param_range_map(model_param)
                    param_range = param_range_map["param"]
                    assert param_range.size == shard_main_param.nelement()

                    model_grad = model_param.main_grad
                    shard_model_grad = model_grad.view(-1) \
                        [param_range.start:param_range.end]
                    shard_main_param.grad = shard_model_grad.float()

        # Copy model groups to shard groups.
        copy_group_grads(self.model_float16_groups,
                         self.shard_fp32_from_float16_groups)
        copy_group_grads(self.model_fp32_groups,
                         self.shard_fp32_groups)


    def _copy_main_params_to_model_params(self):
        """
        Copy main params to model params.

        Since this step is followed by an all-gather through the DDP's grad
        buffer, this method is responsible for copying the updated params
        from the main shards into the correct position in the grad buffer.
        """

        # Utility method for copying group params.
        def copy_group_params(shard_main_groups, model_groups):
            for shard_main_group, model_group in zip(shard_main_groups,
                                                     model_groups):
                for shard_main_param, model_param in zip(shard_main_group,
                                                         model_group):

                    param_range_map = self.get_model_param_range_map(model_param)
                    world_range = param_range_map["gbuf_world"]

                    assert world_range.size == shard_main_param.nelement()

                    model_id, dtype = self.model_param_gbuf_map[model_param]
                    model_param_buffer = self.param_buffers[model_id][dtype]

                    shard_model_param = model_param_buffer.view(-1) \
                        [world_range.start:world_range.end]

                    shard_model_param.data.copy_(shard_main_param)

        # Copy shard groups to model groups.
        copy_group_params(self.shard_fp32_from_float16_groups,
                          self.model_float16_groups)
        copy_group_params(self.shard_fp32_groups,
                          self.model_fp32_groups)


    def _copy_model_params_to_main_params(self):
        """
        Copy model params to main params.

        During finetuning, this method is used to reload the main params from
        the model params. This copy does not make use of the grad buffer as
        an intermediary.
        """

        # Utility method for copying group params.
        def copy_group_params(model_groups, shard_main_groups):
            for model_group, shard_main_group in zip(model_groups,
                                                     shard_main_groups):
                for model_param, shard_main_param in zip(model_group,
                                                         shard_main_group):

                    param_range_map = self.get_model_param_range_map(model_param)
                    param_range = param_range_map["param"]
                    assert param_range.size == shard_main_param.nelement()

                    shard_model_param = model_param.view(-1) \
                        [param_range.start:param_range.end]
                    shard_main_param.data.copy_(shard_model_param)

        # Copy model groups to shard groups.
        copy_group_params(self.model_float16_groups,
                          self.shard_fp32_from_float16_groups)
        copy_group_params(self.model_fp32_groups,
                          self.shard_fp32_groups)