File size: 78,459 Bytes
7ef6853 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 |
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""Pretrain utilities."""
from datetime import datetime
import math
import sys
import time
import json
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from contextlib import nullcontext
from megatron import get_args
from megatron import get_signal_handler
from megatron import get_timers
from megatron import get_tensorboard_writer
from megatron import get_current_global_batch_size
from megatron import get_num_microbatches, get_num_eval_microbatches
from megatron import is_last_rank
from megatron import update_num_microbatches
from megatron.core import mpu, tensor_parallel
from megatron import print_rank_0, is_rank_0
from megatron import print_rank_last
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
from megatron.model import Float16Module
from megatron.model import GPTModel
from megatron.core.enums import ModelType
from megatron.optimizer import get_megatron_optimizer
from megatron.initialize import initialize_megatron
from megatron.initialize import write_args_to_tensorboard
from megatron.initialize import set_jit_fusion_options
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import unwrap_model, found_kill_switch
from megatron.data.data_samplers import build_pretraining_data_loader
from megatron.utils import calc_params_l2_norm
from megatron.core.pipeline_parallel import get_forward_backward_func
from megatron.utils import report_memory, throughput_calculator, checkpoint_throughput_calculator, update_rotary_pos_emb, get_fp8_recipe
from megatron.core.tensor_parallel.data import reset_cached_broadcast_sizes
from megatron.utils import report_memory, throughput_calculator, checkpoint_throughput_calculator
from megatron.model.vision.knn_monitor import compute_feature_bank
from megatron.arguments import core_transformer_config_from_args
from megatron.profiler import setup_profiler, trigger, on_step_begin, on_step_end
import deepspeed
from deepspeed.accelerator import get_accelerator
from deepspeed.compression.compress import init_compression, redundancy_clean
from deepspeed.runtime.data_pipeline.data_routing.helper import convert_to_random_ltd
from megatron.model.transformer import ParallelTransformerLayer
from deepspeed import comm as dist
try:
import wandb
except (ImportError, ModuleNotFoundError):
wandb = None
try:
from habana_frameworks.torch.hpex.experimental.transformer_engine import fp8_autocast
from habana_frameworks.torch.hpex.experimental.transformer_engine import recipe
except (ImportError, ModuleNotFoundError):
fp8_autocast = None
recipe = None
def print_datetime(string):
"""Note that this call will sync across all ranks."""
torch.distributed.barrier()
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print_rank_0('[' + string + '] datetime: {} '.format(time_str))
'''
Since v0.9.0, deepspeed.initialize() has forbidden simultaneous setting of args.deepspeed_config (Path) and ds_config dict.
So, we use ds_config dict which is the more flexible option.
'''
def _create_ds_config_dict():
args = get_args()
if isinstance(args.deepspeed_config, dict) :
ds_config_dict = args.deepspeed_config
else:
with open(args.deepspeed_config, 'r', encoding='utf-8') as config_file:
ds_config_dict = json.load(config_file)
if args.universal_checkpoint:
ds_config_dict["checkpoint"] = {"load_universal": True}
# Clear config path
args.deepspeed_config = None
return ds_config_dict
def pretrain(train_valid_test_dataset_provider,
model_provider,
model_type,
forward_step_func,
process_non_loss_data_func=None,
extra_args_provider=None,
args_defaults={},
data_post_process=None):
"""Main training program.
This function will run the followings in the order provided:
1) initialize Megatron.
2) setup model, optimizer and lr schedule using the model_provider.
3) call train_val_test_data_provider to get train/val/test datasets.
4) train the modle using the forward_step_func.
Arguments:
train_valid_test_dataset_provider: a function that takes the size of
train/valid/test dataset and returns `train, valid, test` datasets.
model_provider: a function that returns a vanilla version of the
model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
model_type: an enum that specifies the type of model being trained.
forward_step_func: a function that takes a `data iterator` and `model`,
and returns a `loss` scalar with a dictionary with key:values being
the info we would like to monitor during training, for example
`lm-loss: value`. We also require that this function add
`batch generator` to the timers class.
process_non_loss_data_func: a function to post process outputs of the
network. It can be used for dumping output tensors (e.g images) to
tensorboard. It takes `collected data`(list of tensors),
`current iteration index` and `tensorboard writer` as arguments.
extra_args_provider: a function that takes a parser and adds arguments
to it. It is used for programs to add their own arguments.
args_defaults: a dictionary from argument-name to argument-value. It
to set already parse arguments.
"""
# Initalize and get arguments, timers, and Tensorboard writer.
initialize_megatron(extra_args_provider=extra_args_provider,
args_defaults=args_defaults)
args = get_args()
if found_kill_switch():
print_datetime(f"Detected kill switch at {args.kill_switch_path}. Exiting")
torch.distributed.barrier()
sys.exit()
# Set pytorch JIT layer fusion options and warmup JIT functions.
if get_accelerator().device_name() == 'cuda':
set_jit_fusion_options()
# Adjust the startup time so it reflects the largest value.
# This will be closer to what scheduler will see (outside of
# image ... launches.
global _TRAIN_START_TIME
start_time_tensor = get_accelerator().DoubleTensor([_TRAIN_START_TIME])
torch.distributed.all_reduce(start_time_tensor,
op=torch.distributed.ReduceOp.MIN)
_TRAIN_START_TIME = start_time_tensor.item()
print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
time.time() - _TRAIN_START_TIME))
print_datetime('after megatron is initialized')
timers = get_timers()
if args.deepspeed:
args.deepspeed_config_dict = _create_ds_config_dict()
if "curriculum_learning" in args.deepspeed_config_dict and \
"enabled" in args.deepspeed_config_dict["curriculum_learning"]:
args.curriculum_learning_legacy = args.deepspeed_config_dict[ \
"curriculum_learning"]["enabled"]
if args.curriculum_learning_legacy and not args.no_pipeline_parallel:
from deepspeed.runtime.data_pipeline.curriculum_scheduler \
import CurriculumScheduler
args.curriculum_scheduler = CurriculumScheduler( \
args.deepspeed_config_dict["curriculum_learning"])
if "compression_training" in args.deepspeed_config_dict:
args.compression_training = True
# Model, optimizer, and learning rate.
timers('model-and-optimizer-setup', log_level=0).start(barrier=True)
model, optimizer, opt_param_scheduler = setup_model_and_optimizer(
model_provider, model_type, teacher=False, data_post_process=data_post_process,
build_train_valid_test_datasets_provider=train_valid_test_dataset_provider)
timers('model-and-optimizer-setup').stop()
print_datetime('after model, optimizer, and learning rate '
'scheduler are built')
# Data stuff.
timers('train/valid/test-data-iterators-setup', log_level=0).start(
barrier=True)
if args.virtual_pipeline_model_parallel_size is not None:
all_data_iterators = [
build_train_valid_test_data_iterators(
train_valid_test_dataset_provider)
for _ in range(len(model))
]
train_data_iterator = [data_iterators[0]
for data_iterators in all_data_iterators]
valid_data_iterator = [data_iterators[1]
for data_iterators in all_data_iterators]
test_data_iterator = [data_iterators[2]
for data_iterators in all_data_iterators]
else:
train_data_iterator, valid_data_iterator, test_data_iterator \
= build_train_valid_test_data_iterators(
train_valid_test_dataset_provider)
if args.data_efficiency_curriculum_learning:
if args.deepspeed_dataloader is not None:
# We use args to pass the deepspeed_dataloader because adding
# output to setup_model_and_optimizer will break the API for other
# cases. We clear args.deepspeed_dataloader after updating
# train_data_iterator because args will be saved in checkpoint and
# attempting to save the whole deepspeed_dataloader will lead to
# "AttributeError: Can't pickle local object...".
train_data_iterator = iter(args.deepspeed_dataloader)
args.deepspeed_dataloader = None
else:
train_data_iterator = None
timers('train/valid/test-data-iterators-setup').stop()
print_datetime('after dataloaders are built')
# args.teacher_model is used as global variable to pass the teacher model
# for knowledge distillation. Users do not need to set it in the command
# line to use kd, but users do need to provide teacher model configurations
# like args.num_layers_teacher as described in setup_teacher_model()
args.teacher_model = None
if args.mos or args.kd: # Set up teacher model
args.teacher_model = setup_teacher_model(args, model_provider)
# Print setup timing.
print_rank_0('done with setup ...')
timers.log(['model-and-optimizer-setup',
'train/valid/test-data-iterators-setup'], barrier=True)
if not args.skip_train:
print_rank_0('training ...')
if args.dataloader_type == 'cyclic' and args.retro_add_retriever:
args.train_iters = args.retro_cyclic_train_iters
print_rank_0("retro cyclic train iters : %d" % args.train_iters)
iteration = 0
if args.do_train and args.train_iters > 0:
iteration = train(forward_step_func,
model, optimizer, opt_param_scheduler,
train_data_iterator, valid_data_iterator,
process_non_loss_data_func)
print_datetime('after training is done')
# Clean the model
if args.compression_training:
model = [redundancy_clean(model[0], args.deepspeed_config_dict, mpu)]
if args.save and iteration != 0:
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
else:
print_rank_0('skipping training (--skip-train is on) ...')
iteration = args.iteration
if args.save and (iteration != 0 or args.universal_checkpoint):
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
config = core_transformer_config_from_args(args)
if args.do_valid:
prefix = f'iteration {iteration} on {args.eval_iters * args.global_batch_size}-sample draw from validation set'
_ = evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, process_non_loss_data_func, config,
verbose=True, write_to_tensorboard=not args.skip_train)
if args.do_test:
prefix = f'iteration {iteration} on {args.eval_iters * args.global_batch_size}-sample draw from test set'
_ = evaluate_and_print_results(prefix, forward_step_func,
test_data_iterator, model,
iteration, process_non_loss_data_func, config,
verbose=True, write_to_tensorboard=not args.skip_train, test=True)
return model
def update_train_iters(args):
# For iteration-based training, we don't need to do anything
if args.train_iters:
return
# Constant batch size with sample-based training.
if args.rampup_batch_size is None:
args.train_iters = args.train_samples // args.global_batch_size
else:
# Sample based training with rampup batch size.
iterations = 0
consumed_samples = 0
# Rampup phase.
while consumed_samples <= int(args.rampup_batch_size[2]):
update_num_microbatches(consumed_samples, consistency_check=False)
consumed_samples += get_current_global_batch_size()
iterations += 1
# Reset
update_num_microbatches(0, consistency_check=False)
# Constant phase
# Note that we throw away any partial last batch.
iterations += (args.train_samples - consumed_samples) // \
args.global_batch_size
args.train_iters = iterations
print_rank_0('setting training iterations to {}'.format(args.train_iters))
def setup_teacher_model(args, model_provider):
print_rank_0('***>>>>> Student model checkpoint iteration:{}'.format(args.iteration))
iteration_stuent = args.iteration
num_layers_student = args.num_layers
num_experts_student = args.num_experts
hidden_size_student = args.hidden_size
num_attention_heads_student = args.num_attention_heads
load_student = args.load
print_rank_0('***>>>>> Setting up the teacher model')
args.num_layers = args.num_layers_teacher
args.num_experts = args.num_experts_teacher
args.hidden_size = args.hidden_size_teacher
args.num_attention_heads = args.num_attention_heads_teacher
args.load = args.load_teacher
teacher_model, _, _ = load_model_weights_only(model_provider)
print_rank_0('***>>>>> Teacher model:{}'.format(teacher_model))
args.num_layers = num_layers_student
args.num_experts = num_experts_student
args.hidden_size = hidden_size_student
args.num_attention_heads = num_attention_heads_student
args.load = load_student
args.iteration = iteration_stuent
return teacher_model
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
"""Build the model."""
args = get_args()
args.model_type = model_type
# Build model.
if mpu.get_pipeline_model_parallel_world_size() > 1 and \
args.virtual_pipeline_model_parallel_size is not None:
assert model_type != ModelType.encoder_and_decoder, \
"Interleaved schedule not supported for model with both encoder and decoder"
model = []
for i in range(args.virtual_pipeline_model_parallel_size):
mpu.set_virtual_pipeline_model_parallel_rank(i)
# Set pre_process and post_process only after virtual rank is set.
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
this_model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
this_model.model_type = model_type
model.append(this_model)
else:
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
add_encoder = True
add_decoder = True
if model_type == ModelType.encoder_and_decoder:
if mpu.get_pipeline_model_parallel_world_size() > 1:
assert args.pipeline_model_parallel_split_rank is not None, \
"Split rank needs to be specified for model with both encoder and decoder"
rank = mpu.get_pipeline_model_parallel_rank()
split_rank = args.pipeline_model_parallel_split_rank
world_size = mpu.get_pipeline_model_parallel_world_size()
pre_process = rank == 0 or rank == split_rank
post_process = (rank == (split_rank - 1)) or (
rank == (world_size - 1))
add_encoder = mpu.is_pipeline_stage_before_split()
add_decoder = mpu.is_pipeline_stage_after_split()
model = model_provider_func(
pre_process=pre_process,
post_process=post_process,
add_encoder=add_encoder,
add_decoder=add_decoder)
else:
model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
model.model_type = model_type
if not isinstance(model, list):
model = [model]
# Disallow training and inference with Transformer Engine
# for non-GPT models
args.allow_transformer_engine = all([type(m).__name__ in ['GPTModelPipe', 'GPTModel'] for m in model])
assert args.allow_transformer_engine or args.transformer_impl == 'local', \
'Transformer Engine is only approved for GPT models'
# Set tensor model parallel attributes if not set.
# Only parameters that are already tensor model parallel have these
# attributes set for them. We should make sure the default attributes
# are set for all params so the optimizer can use them.
for model_module in model:
for param in model_module.parameters():
tensor_parallel.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
# Print number of parameters.
if mpu.get_data_parallel_rank() == 0:
print(' > number of parameters on (tensor, pipeline) '
'model parallel rank ({}, {}): {}'.format(
mpu.get_tensor_model_parallel_rank(),
mpu.get_pipeline_model_parallel_rank(),
sum([sum([p.ds_numel if hasattr(p,'ds_id') else p.nelement() for p in model_module.parameters()])
for model_module in model])), flush=True)
if args.deepspeed:
return model
# GPU allocation.
for model_module in model:
model_module.to(get_accelerator().current_device_name())
# Fp16 conversion.
if args.fp16 or args.bf16:
model = [Float16Module(model_module, args) for model_module in model]
if wrap_with_ddp:
if args.DDP_impl == 'torch':
i = get_accelerator().current_device()
model = [torchDDP(model_module, device_ids=[i], output_device=i,
process_group=mpu.get_data_parallel_group())
for model_module in model]
elif args.DDP_impl == 'local':
model = [LocalDDP(model_module,
args.accumulate_allreduce_grads_in_fp32,
args.use_contiguous_buffers_in_local_ddp)
for model_module in model]
# broad cast params from data parallel src rank to other data parallel ranks
if args.data_parallel_random_init:
for model_module in model:
model_module.broadcast_params()
else:
raise NotImplementedError('Unknown DDP implementation specified: '
'{}. Exiting.'.format(args.DDP_impl))
return model
def get_optimizer_param_scheduler(optimizer):
"""Build the learning rate scheduler."""
args = get_args()
# Iteration-based training.
if args.train_iters:
if args.lr_decay_iters is None:
args.lr_decay_iters = args.train_iters
lr_decay_steps = args.lr_decay_iters * args.global_batch_size
wd_incr_steps = args.train_iters * args.global_batch_size
if args.lr_warmup_fraction is not None:
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
else:
lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
# Sample-based training.
elif args.train_samples:
# We need to set training iters for later use. Technically
# we need to adjust the training samples too (due to last
# batch being incomplete) but we leave it as is for now.
update_train_iters(args)
if args.lr_decay_samples is None:
args.lr_decay_samples = args.train_samples
lr_decay_steps = args.lr_decay_samples
wd_incr_steps = args.train_samples
if args.lr_warmup_fraction is not None:
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
else:
lr_warmup_steps = args.lr_warmup_samples
else:
raise Exception(
'either train-iters or train-samples should be provided.')
opt_param_scheduler = OptimizerParamScheduler(
optimizer,
max_lr=args.lr,
min_lr=args.min_lr,
lr_warmup_steps=lr_warmup_steps,
lr_decay_steps=lr_decay_steps,
lr_decay_style=args.lr_decay_style,
start_wd=args.start_weight_decay,
end_wd=args.end_weight_decay,
wd_incr_steps=wd_incr_steps,
wd_incr_style=args.weight_decay_incr_style,
use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
override_opt_param_scheduler=args.override_opt_param_scheduler)
return opt_param_scheduler
def load_model_weights_only(model_provider_func):
"""Setup model and optimizer."""
args = get_args()
print_rank_0('***>>>>> Args:{}'.format(args))
model = get_model(model_provider_func)
optimizer = None
lr_scheduler = None
if args.deepspeed:
# When loading just the model weights, ZeRO can be disabled.
if 'zero_optimization' in args.deepspeed_config_dict:
del args.deepspeed_config_dict['zero_optimization']
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model[0],
config=args.deepspeed_config_dict
)
assert not isinstance(model, deepspeed.PipelineEngine), \
'Weight loading only mode is not supported in pipeline parallelism yet.'
model = [model]
print_datetime('before load checkpoint')
if args.load is not None:
iteration = load_checkpoint(model, optimizer, lr_scheduler, strict=True, load_only_weights=True)
print_datetime('after load checkpoint weights')
return model, optimizer, lr_scheduler
def setup_model_and_optimizer(model_provider_func,
model_type,
no_wd_decay_cond=None,
scale_lr_cond=None,
lr_mult=1.0,
teacher=False,
data_post_process=None,
build_train_valid_test_datasets_provider=None):
"""Setup model and optimizer."""
args = get_args()
model = get_model(model_provider_func, model_type)
# initialize the compression here
student_global_steps = 0
if args.kd or args.mos:
model, _, _, _ = deepspeed.initialize(
model=model[0],
args=args,
mpu=mpu if args.no_pipeline_parallel else None,
config=args.deepspeed_config_dict,
)
model = [model]
if args.load is not None:
args.iteration = load_checkpoint(model, None, None, strict=False)
else:
args.iteration = 0
student_global_steps = model[0].global_steps
print_rank_0('***>>>>> Student model, global step:{}'.format(student_global_steps))
if args.compression_training:
model, _, _, _ = deepspeed.initialize(
model=model[0],
args=args,
mpu=mpu if args.no_pipeline_parallel else None,
config=args.deepspeed_config_dict,
)
model = [model]
model = [init_compression(model[0].module, args.deepspeed_config_dict, mpu)]
unwrapped_model = unwrap_model(model,
(torchDDP, LocalDDP, Float16Module))
if args.inference:
optimizer = None
opt_param_scheduler = None
else:
if teacher:
optimizer = None
else:
optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
scale_lr_cond, lr_mult)
# opt_param_scheduler is the old lr_scheduler plus weight decay scheduling
opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
if args.deepspeed:
print_rank_0("DeepSpeed is enabled.")
pp = mpu.get_pipeline_model_parallel_world_size()
if args.data_efficiency_curriculum_learning and build_train_valid_test_datasets_provider is not None:
train_ds = None
# Only need to build dataset on tp rank 0 since Megatron has the
# broadcast_data() function that broadcast data from tp rank 0.
if mpu.get_tensor_model_parallel_rank() == 0:
# Number of train/valid/test samples.
if args.train_samples:
train_samples = args.train_samples
update_train_iters(args)
else:
train_samples = args.train_iters * args.global_batch_size
# eval_iters and test_iters here are not actually used, only for
# satisfying the input of build_train_valid_test_datasets_provider.
# We only need to build the training data here. And we follow
# baseline's logic to build eval/test dataset later in
# build_train_valid_test_data_iterators.
eval_iters = (args.train_iters // args.eval_interval + 1) * \
args.eval_iters
test_iters = args.eval_iters
train_val_test_num_samples = [train_samples,
eval_iters * args.global_batch_size,
test_iters * args.global_batch_size]
# Build the datasets.
train_ds, _, _ = build_train_valid_test_datasets_provider(
train_val_test_num_samples)
model, optimizer, args.deepspeed_dataloader, opt_param_scheduler = deepspeed.initialize(
model=model[0],
optimizer=optimizer,
args=args,
lr_scheduler=opt_param_scheduler,
training_data=train_ds,
mpu=mpu if args.no_pipeline_parallel else None,
config=args.deepspeed_config_dict,
)
model.set_data_post_process_func(data_post_process)
else:
model, optimizer, _, opt_param_scheduler = deepspeed.initialize(
model=model[0],
optimizer=optimizer,
args=args,
lr_scheduler=opt_param_scheduler,
mpu=mpu if args.no_pipeline_parallel else None,
config=args.deepspeed_config_dict,
)
if isinstance(model, deepspeed.PipelineEngine):
# hack to get batch_fn from pretrain_gpt.py
model.set_batch_fn(model.module._megatron_batch_fn)
assert model.grid.get_pipe_parallel_rank() == mpu.get_pipeline_model_parallel_rank()
assert model.grid.get_slice_parallel_rank() == mpu.get_tensor_model_parallel_rank()
assert model.grid.get_data_parallel_rank() == mpu.get_data_parallel_rank()
model = [model]
# Compression has its own checkpoint loading path (e.g, loading both teacher and student models). So if compression is enabled, we skip the following checkpoint loading.
no_post_init_checkpoint_loading = args.kd or args.mos
if not no_post_init_checkpoint_loading:
if args.load is not None:
timers = get_timers()
timers('load-checkpoint', log_level=0).start(barrier=True)
args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
timers('load-checkpoint').stop(barrier=True)
timers.log(['load-checkpoint'])
else:
args.iteration = 0
else:
model[0].global_steps = student_global_steps
# We only support local DDP with multiple micro-batches.
if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
assert args.DDP_impl == 'local'
# get model without FP16 and/or TorchDDP wrappers
if args.iteration == 0 and len(unwrapped_model) == 1 \
and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
print_rank_0("Initializing ICT from pretrained BERT model")
unwrapped_model[0].init_state_dict_from_bert()
if args.fp16:
optimizer.reload_model_params()
# random-LTD requires converting transformer layers
if args.random_ltd:
model[0] = convert_to_random_ltd(model[0], ParallelTransformerLayer)
return model, optimizer, opt_param_scheduler
def train_step(forward_step_func, data_iterator,
model, optimizer, opt_param_scheduler, config):
"""Single training step."""
args = get_args()
timers = get_timers()
hpu_transformer_engine = get_accelerator().device_name() == 'hpu' and get_args().transformer_impl == "transformer_engine"
if args.deepspeed and args.ds_pipeline_enabled:
skipped_iter = 0
num_zeros_in_grad = 0
assert isinstance(model[0], deepspeed.PipelineEngine)
with fp8_autocast(enabled=True, fp8_recipe=get_fp8_recipe(args)) \
if hpu_transformer_engine else nullcontext():
loss = model[0].train_batch(data_iter=data_iterator)
grad_norm = model[0].get_global_grad_norm()
return {'lm loss' : loss}, skipped_iter, grad_norm, num_zeros_in_grad
# Set grad to zero.
if not args.deepspeed:
if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
for partition in model:
partition.zero_grad_buffer()
optimizer.zero_grad()
# Forward pass.
timers('forward-backward', log_level=1).start(
barrier=args.barrier_with_L1_time)
forward_backward_func = get_forward_backward_func()
if args.mos or args.kd:
# args.teacher_forward is used as global variable to enable kd loss
# calculation in forward pass. Users do not need to set it in the
# command line to use kd.
args.teacher_forward = True
# set timers to None if none of the timers in fwd_bwd are active, just to save the checks
if args.timing_log_level < 2:
config.timers = None
losses_reduced = forward_backward_func(
forward_step_func=forward_step_func,
data_iterator=data_iterator,
model=model,
num_microbatches=get_num_microbatches(),
seq_length=args.seq_length,
micro_batch_size=args.micro_batch_size,
decoder_seq_length=args.decoder_seq_length,
forward_only=False)
# reset timers if necessary
if config.timers is None:
config.timers = timers
timers('forward-backward').stop()
if args.mos or args.kd:
args.teacher_forward = False
# Empty unused memory.
if args.empty_unused_memory_level >= 1:
torch.cuda.empty_cache()
# Reduce gradients.
if not args.deepspeed:
optimizer.reduce_model_grads(args, timers)
# Vision gradients.
if args.vision_pretraining and args.vision_pretraining_type == "dino":
unwrapped_model = unwrap_model(model[0],
(torchDDP, LocalDDP, Float16Module))
unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)
# Update parameters.
timers('optimizer', log_level=1).start(barrier=args.barrier_with_L1_time)
if args.deepspeed:
increment = get_num_microbatches() * \
args.micro_batch_size * \
args.data_parallel_size
model[0].step(lr_kwargs={'increment': increment})
update_successful = model[0].was_step_applied()
else:
update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
timers('optimizer').stop()
# Gather params.
if not args.deepspeed and update_successful:
optimizer.gather_model_params(args, timers)
# Vision momentum.
if args.vision_pretraining and args.vision_pretraining_type == "dino":
unwrapped_model = unwrap_model(model[0],
(torchDDP, LocalDDP, Float16Module))
unwrapped_model.update_momentum(args.curr_iteration)
# Update learning rate.
if args.deepspeed:
skipped_iter = 0
grad_norm = None
num_zeros_in_grad = None
loss_reduced = {}
for key in losses_reduced[0]:
losses_reduced_for_key = [x[key] for x in losses_reduced]
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
else:
if update_successful:
increment = get_num_microbatches() * \
args.micro_batch_size * \
args.data_parallel_size
opt_param_scheduler.step(increment=increment)
skipped_iter = 0
else:
skipped_iter = 1
# Empty unused memory.
if args.empty_unused_memory_level >= 2:
torch.cuda.empty_cache()
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Average loss across microbatches.
loss_reduced = {}
for key in losses_reduced[0]:
losses_reduced_for_key = [x[key] for x in losses_reduced]
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
return {}, skipped_iter, grad_norm, num_zeros_in_grad
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
loss_scale, report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad,
model=None, optimizer=None):
"""Log training information such as losses, timing, ...."""
args = get_args()
timers = get_timers()
writer = get_tensorboard_writer()
# Advanced, skipped, and Nan iterations.
advanced_iters_key = 'advanced iterations'
skipped_iters_key = 'skipped iterations'
nan_iters_key = 'nan iterations'
# Advanced iterations.
if not skipped_iter:
total_loss_dict[advanced_iters_key] = total_loss_dict.get(
advanced_iters_key, 0) + 1
else:
if advanced_iters_key not in total_loss_dict:
total_loss_dict[advanced_iters_key] = 0
# Skipped iterations.
total_loss_dict[skipped_iters_key] = total_loss_dict.get(
skipped_iters_key, 0) + skipped_iter
# Update losses and set nan iterations
got_nan = False
for key in loss_dict:
if not skipped_iter:
total_loss_dict[key] = total_loss_dict.get(
key, get_accelerator().FloatTensor([0.0])) + loss_dict[key]
else:
value = loss_dict[key].float().sum().item()
is_nan = value == float('inf') or \
value == -float('inf') or \
value != value
got_nan = got_nan or is_nan
total_loss_dict[nan_iters_key] = total_loss_dict.get(
nan_iters_key, 0) + int(got_nan)
# Logging.
timers_to_log = [
'forward-backward',
'forward-compute',
'backward-compute',
'batch-generator',
'forward-recv',
'forward-send',
'backward-recv',
'backward-send',
'forward-send-forward-recv',
'forward-send-backward-recv',
'backward-send-forward-recv',
'backward-send-backward-recv',
'forward-backward-send-forward-backward-recv',
'layernorm-grads-all-reduce',
'embedding-grads-all-reduce',
'grads-all-reduce',
'grads-reduce-scatter',
'params-all-gather',
'optimizer-copy-to-main-grad',
'optimizer-unscale-and-check-inf',
'optimizer-clip-main-grad',
'optimizer-count-zeros',
'optimizer-inner-step',
'optimizer-copy-main-to-model-params',
'optimizer']
# Calculate batch size.
batch_size = args.micro_batch_size * args.data_parallel_size * \
get_num_microbatches()
total_iterations = total_loss_dict[advanced_iters_key] + \
total_loss_dict[skipped_iters_key]
# Tensorboard values.
# Timer requires all the ranks to call.
if args.log_timers_to_tensorboard and \
(iteration % args.tensorboard_log_interval == 0):
timers.write(timers_to_log, writer, iteration,
normalizer=total_iterations)
if writer and (iteration % args.tensorboard_log_interval == 0):
writer.add_scalar('steps-vs-samples/y=steps,x=samples', iteration, args.consumed_train_samples)
writer.add_scalar('steps-vs-samples/y=samples,x=steps', args.consumed_train_samples, iteration)
writer.add_scalar('steps-vs-tokens/y=steps,x=tokens', iteration, args.consumed_train_tokens)
writer.add_scalar('steps-vs-tokens/y=tokens,x=steps', args.consumed_train_tokens, iteration)
if args.log_learning_rate_to_tensorboard:
writer.add_scalar('learning-rate/learning-rate', learning_rate, iteration)
writer.add_scalar('learning-rate/learning-rate vs samples', learning_rate,
args.consumed_train_samples)
writer.add_scalar('learning-rate/learning-rate vs tokens', learning_rate,
args.consumed_train_tokens)
if args.log_batch_size_to_tensorboard:
writer.add_scalar('batch-size/batch-size', batch_size, iteration)
writer.add_scalar('batch-size/batch-size vs samples', batch_size,
args.consumed_train_samples)
writer.add_scalar('batch-size/batch-size vs tokens', batch_size,
args.consumed_train_tokens)
for key in loss_dict:
writer.add_scalar(f"lm-loss-training/{key}", loss_dict[key], iteration)
writer.add_scalar(f"lm-loss-training/{key}" + ' vs samples', loss_dict[key],
args.consumed_train_samples)
writer.add_scalar(f"lm-loss-training/{key}" + ' vs tokens', loss_dict[key],
args.consumed_train_tokens)
if args.fp16 and (loss_scale and args.log_loss_scale_to_tensorboard):
writer.add_scalar('loss-scale/loss-scale', loss_scale, iteration)
writer.add_scalar('loss-scale/loss-scale vs samples', loss_scale,
args.consumed_train_samples)
writer.add_scalar('loss-scale/loss-scale vs tokens', loss_scale,
args.consumed_train_tokens)
if args.log_world_size_to_tensorboard:
writer.add_scalar('world-size/world-size', args.world_size, iteration)
writer.add_scalar('world-size/world-size vs samples', args.world_size,
args.consumed_train_samples)
writer.add_scalar('world-size/world-size vs tokens', args.world_size,
args.consumed_train_tokens)
if grad_norm is not None:
writer.add_scalar('grad-norm/grad-norm', grad_norm, iteration)
writer.add_scalar('grad-norm/grad-norm vs samples', grad_norm,
args.consumed_train_samples)
writer.add_scalar('grad-norm/grad-norm vs tokens', grad_norm,
args.consumed_train_tokens)
if num_zeros_in_grad is not None:
writer.add_scalar('num-zeros/num-zeros', num_zeros_in_grad, iteration)
writer.add_scalar('num-zeros/num-zeros vs samples', num_zeros_in_grad,
args.consumed_train_samples)
writer.add_scalar('num-zeros/num-zeros vs tokens', num_zeros_in_grad,
args.consumed_train_tokens)
if params_norm is not None:
writer.add_scalar('params-norm/params-norm', params_norm, iteration)
writer.add_scalar('params-norm/params-norm vs samples', params_norm,
args.consumed_train_samples)
writer.add_scalar('params-norm/params-norm vs tokens', params_norm,
args.consumed_train_tokens)
if hasattr(args, 'actual_seq_length'):
writer.add_scalar('seqlen/actual_seq_length', args.actual_seq_length,
iteration)
writer.add_scalar('seqlen/actual_seq_length vs samples', args.actual_seq_length,
args.consumed_train_samples)
writer.add_scalar('seqlen/actual_seq_length vs tokens', args.actual_seq_length,
args.consumed_train_tokens)
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
writer.add_scalar('seqlen/curriculum_seqlen', args.curriculum_seqlen,
iteration)
writer.add_scalar('seqlen/curriculum_seqlen vs samples', args.curriculum_seqlen,
args.consumed_train_samples)
writer.add_scalar('seqlen/curriculum_seqlen vs tokens', args.curriculum_seqlen,
args.consumed_train_tokens)
if args.random_ltd:
writer.add_scalar('seqlen/random_ltd_reserved_length', args.random_ltd_reserved_length,
iteration)
writer.add_scalar('seqlen/random_ltd_reserved_length vs samples', args.random_ltd_reserved_length,
args.consumed_train_samples)
writer.add_scalar('seqlen/random_ltd_reserved_length vs tokens', args.random_ltd_reserved_length,
args.consumed_train_tokens)
if args.log_memory_to_tensorboard:
mem_stats = torch.cuda.memory_stats()
writer.add_scalar(
"mem-reserved-bytes",
mem_stats["reserved_bytes.all.current"],
iteration,
)
writer.add_scalar(
"mem-allocated-bytes",
mem_stats["allocated_bytes.all.current"],
iteration,
)
writer.add_scalar(
"mem-allocated-count",
mem_stats["allocation.all.current"],
iteration,
)
if iteration % args.tensorboard_log_interval == 0:
# This logging write various optimizer states to tensorboard. This
# feature may consume extra GPU memory thus is set at false by default.
if args.log_optimizer_states_to_tensorboard and optimizer is not None:
opt_stats = [0.0] * 8
opt_stats_2 = [0.0] * 4
for _, group in enumerate(optimizer.param_groups):
for _, param in enumerate(group['params']):
opt_stats[0] += (torch.norm(optimizer.state[param]['exp_avg_sq']).item())**2
opt_stats[1] += (torch.norm(optimizer.state[param]['exp_avg_sq'].sqrt()).item())**2
opt_stats[2] += (torch.norm(optimizer.state[param]['exp_avg']).item())**2
opt_stats[3] += (torch.norm(param).item())**2
opt_stats[4] += torch.norm(optimizer.state[param]['exp_avg_sq'],p=1).item()
opt_stats[5] += torch.norm(optimizer.state[param]['exp_avg_sq'].sqrt(),p=1).item()
opt_stats[6] += torch.norm(optimizer.state[param]['exp_avg'],p=1).item()
opt_stats[7] += torch.norm(param,p=1).item()
opt_stats_2[0] = max(opt_stats_2[0], abs(optimizer.state[param]['exp_avg_sq'].max().item()), abs(optimizer.state[param]['exp_avg_sq'].min().item()))
opt_stats_2[1] = max(opt_stats_2[1], optimizer.state[param]['exp_avg_sq'].sqrt().abs_().max().item())
opt_stats_2[2] = max(opt_stats_2[2], abs(optimizer.state[param]['exp_avg'].max().item()), abs(optimizer.state[param]['exp_avg'].min().item()))
opt_stats_2[3] = max(opt_stats_2[3], abs(param.max().item()), abs(param.min().item()))
# print('step {} rank {} before sync opt_stats {}, {}'.format(iteration, torch.distributed.get_rank(), opt_stats_2, opt_stats))
if args.zero_stage > 0:
# ZeRO partiions optimizer states
opt_stats = get_accelerator().FloatTensor(opt_stats)
torch.distributed.all_reduce(opt_stats, group=mpu.get_sequence_data_parallel_group())
opt_stats_2 = get_accelerator().FloatTensor(opt_stats_2)
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_sequence_data_parallel_group())
if args.tensor_model_parallel_size > 1:
opt_stats = get_accelerator().FloatTensor(opt_stats)
torch.distributed.all_reduce(opt_stats, group=mpu.get_tensor_model_parallel_group())
opt_stats_2 = get_accelerator().FloatTensor(opt_stats_2)
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_tensor_model_parallel_group())
if args.pipeline_model_parallel_size > 1:
opt_stats = get_accelerator().FloatTensor(opt_stats)
torch.distributed.all_reduce(opt_stats, group=mpu.get_pipeline_model_parallel_group())
opt_stats_2 = get_accelerator().FloatTensor(opt_stats_2)
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_pipeline_model_parallel_group())
# print('step {} rank {} after sync opt_stats {}, {}'.format(iteration, torch.distributed.get_rank(), opt_stats_2, opt_stats))
if writer and is_last_rank():
writer.add_scalar('optimizer/variance_l2 vs tokens', opt_stats[0]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_sqrt_l2 vs tokens', opt_stats[1]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/momentum_l2 vs tokens', opt_stats[2]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/weight_l2 vs tokens', opt_stats[3]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_l1 vs tokens', opt_stats[4], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_sqrt_l1 vs tokens', opt_stats[5], args.consumed_train_tokens)
writer.add_scalar('optimizer/momentum_l1 vs tokens', opt_stats[6], args.consumed_train_tokens)
writer.add_scalar('optimizer/weight_l1 vs tokens', opt_stats[7], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_abs_max vs tokens', opt_stats_2[0], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_sqrt_abs_max vs tokens', opt_stats_2[1], args.consumed_train_tokens)
writer.add_scalar('optimizer/momentum_abs_max vs tokens', opt_stats_2[2], args.consumed_train_tokens)
writer.add_scalar('optimizer/weight_abs_max vs tokens', opt_stats_2[3], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_l2', opt_stats[0]**0.5, iteration)
writer.add_scalar('optimizer/variance_sqrt_l2', opt_stats[1]**0.5, iteration)
writer.add_scalar('optimizer/momentum_l2', opt_stats[2]**0.5, iteration)
writer.add_scalar('optimizer/weight_l2', opt_stats[3]**0.5, iteration)
writer.add_scalar('optimizer/variance_l1', opt_stats[4], iteration)
writer.add_scalar('optimizer/variance_sqrt_l1', opt_stats[5], iteration)
writer.add_scalar('optimizer/momentum_l1', opt_stats[6], iteration)
writer.add_scalar('optimizer/weight_l1', opt_stats[7], iteration)
writer.add_scalar('optimizer/variance_abs_max', opt_stats_2[0], iteration)
writer.add_scalar('optimizer/variance_sqrt_abs_max', opt_stats_2[1], iteration)
writer.add_scalar('optimizer/momentum_abs_max', opt_stats_2[2], iteration)
writer.add_scalar('optimizer/weight_abs_max', opt_stats_2[3], iteration)
if iteration % args.log_interval == 0:
elapsed_time = timers('interval-time').elapsed(barrier=True)
elapsed_time_per_iteration = elapsed_time / total_iterations
seq_len = args.seq_length
if hasattr(args, 'actual_seq_length'):
seq_len = args.actual_seq_length
samples_per_sec, tflops, approx_parameters_in_billions = throughput_calculator(
model,
args,
elapsed_time,
total_iterations
)
samples_per_sec_per_replica = samples_per_sec / args.data_parallel_size
tokens_per_sec = samples_per_sec * seq_len
tokens_per_sec_per_replica = tokens_per_sec / args.data_parallel_size
tokens_per_gpu_per_second = tokens_per_sec / args.world_size
tokens_per_gpu_per_second_per_replica = tokens_per_gpu_per_second / args.data_parallel_size
if wandb is not None and getattr(wandb, 'run', None) is not None:
tput = {
'throughput/iteration-time': elapsed_time_per_iteration, # 1000 ms / s
'throughput/samples_per_sec': samples_per_sec,
'throughput/samples_per_sec_per_replica': samples_per_sec_per_replica,
'throughput/tokens_per_sec': tokens_per_sec,
'throughput/tokens_per_sec_per_replica': tokens_per_sec_per_replica,
'throughput/tokens_per_gpu_per_sec': tokens_per_gpu_per_second,
'throughput/tokens_per_gpu_per_sec_per_replica': tokens_per_gpu_per_second_per_replica,
'throughput/tflops': tflops,
'throughput/approx_params_in_billions': approx_parameters_in_billions,
'throughput/elapsed_ms_per_iteration': elapsed_time_per_iteration,
}
wandb.run.log(tput)
if writer:
if args.log_timers_to_tensorboard:
writer.add_scalar('iteration-time/iteration-time',
elapsed_time_per_iteration, iteration)
writer.add_scalar('iteration-time/iteration-time vs samples',
elapsed_time_per_iteration, args.consumed_train_samples)
writer.add_scalar('iteration-time/iteration-time vs tokens',
elapsed_time_per_iteration, args.consumed_train_tokens)
log_string = ' iteration {:8d}/{:8d} |'.format(
iteration, args.train_iters)
log_string += ' consumed samples: {:12d} |'.format(
args.consumed_train_samples)
log_string += ' consumed tokens: {:12d} |'.format(
args.consumed_train_tokens)
log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
elapsed_time_per_iteration * 1000.0)
log_string += ' learning rate: {:.3E} |'.format(learning_rate)
log_string += ' global batch size: {:5d} |'.format(batch_size)
for key in total_loss_dict:
if key not in [advanced_iters_key, skipped_iters_key,
nan_iters_key]:
avg = total_loss_dict[key].item() / \
float(max(1, total_loss_dict[advanced_iters_key]))
if avg > 0.0:
log_string += ' {}: {:.6E} |'.format(key, avg)
total_loss_dict[key] = get_accelerator().FloatTensor([0.0])
if loss_scale is not None:
log_string += ' loss scale: {:.1f} |'.format(loss_scale)
if grad_norm is not None:
log_string += ' grad norm: {:.3f} |'.format(grad_norm)
if num_zeros_in_grad is not None:
log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
if params_norm is not None:
log_string += ' params norm: {:.3f} |'.format(params_norm)
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
log_string += ' curriculum seqlen: {:5d} |'.format(args.curriculum_seqlen)
if args.random_ltd:
log_string += ' random ltd reserved length: {:5d} |'.format(args.random_ltd_reserved_length)
log_string += ' actual seqlen: {:5d} |'.format(seq_len)
log_string += ' number of skipped iterations: {:3d} |'.format(
total_loss_dict[skipped_iters_key])
log_string += ' number of nan iterations: {:3d} |'.format(
total_loss_dict[nan_iters_key])
log_string += ' samples per second: {:.3f} |'.format(samples_per_sec)
log_string += ' tokens per gpu per second (tgs): {:.3f} |'.format(tokens_per_gpu_per_second)
log_string += ' TFLOPs: {:.2f} |'.format(tflops)
total_loss_dict[advanced_iters_key] = 0
total_loss_dict[skipped_iters_key] = 0
total_loss_dict[nan_iters_key] = 0
print_rank_last(log_string)
if report_memory_flag and learning_rate > 0.:
# Report memory after optimizer state has been initialized.
report_memory('(after {} iterations)'.format(iteration))
report_memory_flag = False
timers.log(timers_to_log, normalizer=args.log_interval)
return report_memory_flag
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
timers = get_timers()
# Extra barrier is added to make sure
# all ranks report the max time.
timers('save-checkpoint', log_level=0).start(barrier=True)
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
timers('save-checkpoint').stop(barrier=True)
checkpoint_throughput_calculator(model, timers('save-checkpoint').elapsed(reset=False))
timers.log(['save-checkpoint'])
def train(forward_step_func, model, optimizer, opt_param_scheduler,
train_data_iterator, valid_data_iterator,
process_non_loss_data_func):
"""Train the model function."""
args = get_args()
timers = get_timers()
# Write args to tensorboard
write_args_to_tensorboard()
setup_profiler(args, get_accelerator().device_name())
if args.random_ltd:
# random-ltd requires different randomness on each rank
import random
random.seed(args.seed + torch.distributed.get_rank())
# Turn on training mode which enables dropout.
for model_module in model:
model_module.train()
# Tracking loss.
total_loss_dict = {}
# Iterations.
iteration = args.iteration
# Translate args to core configuration
config = core_transformer_config_from_args(args)
if not args.deepspeed:
config.grad_scale_func = optimizer.scale_loss
config.timers = timers
timers('interval-time', log_level=0).start(barrier=True)
print_datetime('before the start of training step')
report_memory_flag = True
if args.random_ltd:
assert model[0].random_ltd_enabled()
args.random_ltd_layer_num = model[0].random_ltd_scheduler.get_random_ltd_layer_num()
while iteration < args.train_iters and (args.train_tokens is None or \
args.consumed_train_tokens < args.train_tokens):
trigger(on_step_begin)
update_num_microbatches(args.consumed_train_samples)
if args.deepspeed:
# inform deepspeed of any batch size changes
global_batch_size = mpu.get_data_parallel_world_size() * \
args.micro_batch_size * \
get_num_microbatches()
model[0].set_train_batch_size(global_batch_size)
if args.curriculum_learning_legacy and not args.no_pipeline_parallel:
curriculum_seqlen = args.curriculum_scheduler.update_difficulty( \
args.iteration + 1)
if iteration == 0 or curriculum_seqlen != args.curriculum_seqlen:
if args.use_rotary_position_embeddings:
update_rotary_pos_emb(curriculum_seqlen)
args.curriculum_seqlen = curriculum_seqlen
args.curr_iteration = iteration
loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
train_step(forward_step_func,
train_data_iterator,
model,
optimizer,
opt_param_scheduler,
config)
iteration += 1
args.iteration = iteration
new_samples = mpu.get_data_parallel_world_size() * \
args.micro_batch_size * \
get_num_microbatches()
args.consumed_train_samples += new_samples
# This actual_seq_length is used for actual consumed tokens calculation, flops calculation, and logging.
args.actual_seq_length = args.seq_length
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
args.actual_seq_length = args.curriculum_seqlen
if args.random_ltd:
args.random_ltd_reserved_length = model[0].random_ltd_scheduler.get_current_seq()
if args.random_ltd_reserved_length < args.actual_seq_length:
args.actual_seq_length = (args.actual_seq_length * (args.num_layers - args.random_ltd_layer_num) + args.random_ltd_reserved_length * args.random_ltd_layer_num) // args.num_layers
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
if hasattr(args, 'data_efficiency_curriculum_learning_numel'):
act_mbsz = args.data_efficiency_curriculum_learning_numel / args.curriculum_seqlen
act_token = act_mbsz * args.actual_seq_length
args.consumed_train_tokens += mpu.get_data_parallel_world_size() * \
get_num_microbatches() * act_token
else:
args.consumed_train_tokens += new_samples * args.actual_seq_length
else:
args.consumed_train_tokens += new_samples * args.actual_seq_length
# Logging.
if args.deepspeed:
if hasattr(model[0].optimizer, 'cur_scale'):
loss_scale = model[0].optimizer.cur_scale
else:
loss_scale = None
else:
loss_scale = optimizer.get_loss_scale().item()
params_norm = None
if args.log_params_norm:
params_norm = calc_params_l2_norm(model)
report_memory_flag = training_log(loss_dict, total_loss_dict,
optimizer.param_groups[0]['lr'],
iteration, loss_scale,
report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad,
model, optimizer)
# Autoresume
if args.adlr_autoresume and \
(iteration % args.adlr_autoresume_interval == 0):
check_adlr_autoresume_termination(iteration, model, optimizer,
opt_param_scheduler)
# Evaluation
if args.eval_interval and iteration % args.eval_interval == 0 and \
args.do_valid:
prefix = 'iteration {}'.format(iteration)
eval_loss = evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration,
process_non_loss_data_func,
config, False)
# Exiting based on eval loss
if args.eval_loss_exit_value is not None and eval_loss <= args.eval_loss_exit_value:
if args.save:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
torch.distributed.barrier()
print_datetime(f"Reached target loss value: {args.eval_loss_exit_value}. "
f"Stopping the training at iteration: {iteration} with loss: {eval_loss}")
sys.exit()
# Checkpointing
saved_checkpoint = False
if args.exit_signal_handler:
signal_handler = get_signal_handler()
if any(signal_handler.signals_received()):
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime('exiting program after receiving SIGTERM.')
sys.exit()
if args.save and args.save_interval and \
iteration % args.save_interval == 0:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
saved_checkpoint = True
# Exiting based on duration
if args.exit_duration_in_mins:
train_time = (time.time() - _TRAIN_START_TIME) / 60.0
done_cuda = get_accelerator().IntTensor(
[train_time > args.exit_duration_in_mins])
torch.distributed.all_reduce(
done_cuda, op=torch.distributed.ReduceOp.MAX)
done = done_cuda.item()
if done:
if not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime('exiting program after {} minutes'.format(train_time))
sys.exit()
# Exiting based on iterations
if args.exit_interval and iteration % args.exit_interval == 0:
if args.save and not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
torch.distributed.barrier()
print_datetime('exiting program at iteration {}'.format(iteration))
sys.exit()
trigger(on_step_end)
# Exiting based on kill-switch
if found_kill_switch():
if not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime(f"Detected kill switch at {args.kill_switch_path}, "
f"iteration={iteration}. Exiting")
torch.distributed.barrier()
sys.exit()
return iteration
def evaluate(forward_step_func,
data_iterator,
model,
process_non_loss_data_func,
config,
verbose=False):
"""Evaluation."""
args = get_args()
if args.vision_pretraining and args.vision_pretraining_type == "dino":
compute_feature_bank(model)
# Turn on evaluation mode which disables dropout.
for model_module in model:
model_module.eval()
if args.curriculum_learning_legacy and not args.no_pipeline_parallel:
# When curriculum learning is used with pipeline parallelism, we need
# this logic to ensure that the eval data is not truncated. If there
# is a seqlen change due to that, we need to call
# reset_activation_shape() to reset some buffers in deepspeed pipeline
# engine.
if args.curriculum_seqlen < args.seq_length:
args.curriculum_seqlen = args.seq_length
if args.use_rotary_position_embeddings:
update_rotary_pos_emb(args.curriculum_seqlen)
model[0].reset_activation_shape()
if args.eval_micro_batch_size != args.micro_batch_size:
reset_cached_broadcast_sizes()
model[0].reset_activation_shape()
total_loss_dict = {}
with torch.no_grad():
iteration = 0
total_iterations = args.eval_iters
if args.eval_iters == -1:
print_rank_0(F"Evaluation on the entire set as eval-iters is set to {args.eval_iters}")
samples_per_iteration = mpu.get_data_parallel_world_size() \
* args.eval_micro_batch_size \
* get_num_eval_microbatches()
total_iterations = math.ceil(args.eval_total_samples / samples_per_iteration)
print_rank_0(F"Evaluation Iterations: {total_iterations}, Total Eval Samples: {args.eval_total_samples}, samples per iteration: {samples_per_iteration}")
args.consumed_valid_samples = 0
num_eval_microbatches = get_num_eval_microbatches()
while iteration < total_iterations:
iteration += 1
if iteration == total_iterations and args.eval_iters == -1:
num_eval_microbatches = math.ceil((args.eval_total_samples - args.consumed_valid_samples) / \
(mpu.get_data_parallel_world_size() * args.eval_micro_batch_size))
if verbose and iteration % args.log_interval == 0:
print_rank_0('Evaluating iter {}/{}'.format(iteration,
args.eval_iters))
forward_backward_func = get_forward_backward_func()
# Don't care about timing during evaluation
config.timers = None
if args.deepspeed and args.ds_pipeline_enabled:
# DeepSpeed uses eval_batch() and already aggregates losses.
assert isinstance(model, list) and len(model) == 1
loss = model[0].eval_batch(data_iterator, eval_micro_batches=num_eval_microbatches)
loss_dicts = [{'lm loss' : loss}] * num_eval_microbatches
else:
assert args.micro_batch_size == args.eval_micro_batch_size, \
"evaluate (training) - Megatron's forward_backward_func options - " \
"Unsupported for split micro batch size"
loss_dicts = forward_backward_func(
forward_step_func=forward_step_func,
data_iterator=data_iterator,
model=model,
num_microbatches=get_num_microbatches(),
seq_length=args.seq_length,
micro_batch_size=args.micro_batch_size,
decoder_seq_length=args.decoder_seq_length,
forward_only=True)
config.timers = get_timers()
# Empty unused memory
if args.empty_unused_memory_level >= 1:
torch.cuda.empty_cache()
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Reduce across processes.
for loss_dict in loss_dicts:
for key in loss_dict:
if 'moe' not in key:
total_loss_dict[key] = total_loss_dict.get(
key, get_accelerator().FloatTensor([0.0])) + loss_dict[key]
args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
* args.eval_micro_batch_size \
* num_eval_microbatches
collected_non_loss_data = None
if process_non_loss_data_func is not None and is_last_rank():
collected_non_loss_data = forward_backward_func(
forward_step_func=forward_step_func,
data_iterator=data_iterator,
model=model,
num_microbatches=get_num_microbatches(),
seq_length=args.seq_length,
micro_batch_size=args.micro_batch_size,
decoder_seq_length=args.decoder_seq_length,
forward_only=True,
collect_non_loss_data=True)
# Move model back to the train mode.
for model_module in model:
model_module.train()
for key in total_loss_dict:
total_loss_dict[key] /= (((total_iterations-1) * get_num_eval_microbatches()) + num_eval_microbatches)
if args.curriculum_learning_legacy and not args.no_pipeline_parallel:
# roll back to actual curriculum seqlen at the end of eval.
args.curriculum_seqlen = args.curriculum_scheduler.update_difficulty( \
args.iteration + 1)
if args.curriculum_seqlen < args.seq_length:
if args.use_rotary_position_embeddings:
update_rotary_pos_emb(args.curriculum_seqlen)
model[0].reset_activation_shape()
if args.eval_micro_batch_size != args.micro_batch_size:
reset_cached_broadcast_sizes()
model[0].reset_activation_shape()
return total_loss_dict, collected_non_loss_data
def evaluate_and_print_results(prefix, forward_step_func,
data_iterator, model,
iteration, process_non_loss_data_func, config,
verbose=False, write_to_tensorboard=True, test=False):
"""Helper function to evaluate and dump results on screen."""
args = get_args()
if write_to_tensorboard:
writer = get_tensorboard_writer()
else:
writer = None
total_loss_dict, collected_non_loss_data = evaluate(
forward_step_func, data_iterator, model,
process_non_loss_data_func, config, verbose)
string = ' validation loss at {} | '.format(prefix)
eval_loss = 0
for key in total_loss_dict:
eval_loss = total_loss_dict[key].item()
string += '{} value: {:.6E} | '.format(key, eval_loss)
ppl = math.exp(min(20, eval_loss))
string += '{} PPL: {:.6E} | '.format(key, ppl)
if writer and is_last_rank():
data_type = 'test' if test else 'validation'
writer.add_scalar(f'lm-loss-validation/{key} {data_type}',
eval_loss,
iteration)
writer.add_scalar(f'lm-loss-validation/{key} {data_type} vs samples',
eval_loss,
args.consumed_train_samples)
writer.add_scalar(f'lm-loss-validation/{key} {data_type} vs tokens',
eval_loss,
args.consumed_train_tokens)
if args.log_validation_ppl_to_tensorboard:
writer.add_scalar(f'lm-loss-validation/{key} {data_type} ppl', ppl,
iteration)
writer.add_scalar(f'lm-loss-validation/{key} {data_type} ppl vs samples',
ppl, args.consumed_train_samples)
writer.add_scalar(f'lm-loss-validation/{key} {data_type} ppl vs tokens',
ppl, args.consumed_train_tokens)
if process_non_loss_data_func is not None and writer and is_last_rank():
process_non_loss_data_func(collected_non_loss_data, iteration, writer)
length = len(string) + 1
print_rank_last('-' * length)
print_rank_last(string)
print_rank_last('-' * length)
if args.eval_loss_exit_value is not None:
eval_loss_tensor = get_accelerator().FloatTensor([eval_loss])
torch.distributed.all_reduce(eval_loss_tensor, op=torch.distributed.ReduceOp.MAX)
eval_loss = eval_loss_tensor.item()
return eval_loss
def cyclic_iter(iter):
while True:
for x in iter:
yield x
def build_train_valid_test_datasets(build_train_valid_test_datasets_provider):
"""Build pretraining datasets."""
args = get_args()
# Number of train/valid/test samples.
if args.train_samples:
train_samples = args.train_samples
else:
train_samples = args.train_iters * args.global_batch_size
eval_iters = (args.train_iters // args.eval_interval + 1) * \
args.eval_iters
test_iters = args.eval_iters
if args.eval_iters == -1:
print_rank_0("Evaluation iterations are set to -1")
train_val_test_num_samples = [train_samples, -1, -1]
else:
train_val_test_num_samples = [train_samples,
eval_iters * args.global_batch_size,
test_iters * args.global_batch_size]
print_rank_0(' > datasets target sizes (minimum size):')
print_rank_0(' train: {}'.format(train_val_test_num_samples[0]))
print_rank_0(' validation: {}'.format(train_val_test_num_samples[1]))
print_rank_0(' test: {}'.format(train_val_test_num_samples[2]))
# Build the datasets.
return build_train_valid_test_datasets_provider(train_val_test_num_samples)
def build_train_valid_test_data_loaders(
build_train_valid_test_datasets_provider):
"""Build pretraining data loaders."""
args = get_args()
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
print_rank_0('> building train, validation, and test datasets ...')
# Backward compatibility, assume fixed batch size.
if args.iteration > 0 and args.consumed_train_samples == 0:
assert args.train_samples is None, \
'only backward compatiblity support for iteration-based training'
args.consumed_train_samples = args.iteration * args.global_batch_size
if args.iteration > 0 and args.consumed_valid_samples == 0:
if args.train_samples is None:
args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
args.eval_iters * args.global_batch_size
# Data loader only on rank 0 of each model parallel group.
ds_sequence_parallel = mpu.get_sequence_parallel_world_size() > 1 or args.force_ds_sequence_parallel
rank_in_parallel_group = mpu.get_sequence_parallel_rank() if ds_sequence_parallel else mpu.get_tensor_model_parallel_rank()
if rank_in_parallel_group == 0:
# Build datasets.
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
build_train_valid_test_datasets_provider)
if args.eval_iters == -1:
eval_total_samples = len(valid_ds)
consumed_valid_samples = 0
use_all_eval_samples = True
else:
eval_total_samples = 0
consumed_valid_samples = args.consumed_valid_samples
use_all_eval_samples = False
# Build dataloders.
train_dataloader = build_pretraining_data_loader(
train_ds, args.consumed_train_samples, True)
valid_dataloader = build_pretraining_data_loader(
valid_ds, consumed_valid_samples, False, use_all_eval_samples)
test_dataloader = build_pretraining_data_loader(test_ds, 0, False)
# Flags to know if we need to do training/validation/testing.
do_train = train_dataloader is not None and args.train_iters > 0
do_valid = valid_dataloader is not None and (args.eval_iters > 0 or args.eval_iters == -1)
do_test = test_dataloader is not None and args.eval_iters > 0
# Need to broadcast num_tokens and num_type_tokens.
flags = get_accelerator().LongTensor(
[int(do_train), int(do_valid), int(do_test), int(eval_total_samples)])
else:
flags = get_accelerator().LongTensor([0, 0, 0, 0])
# Broadcast num tokens.
if ds_sequence_parallel:
torch.distributed.broadcast(flags,
mpu.get_sequence_parallel_src_rank(),
group=mpu.get_sequence_parallel_group())
else:
torch.distributed.broadcast(flags,
mpu.get_tensor_model_parallel_src_rank(),
group=mpu.get_tensor_model_parallel_group())
args.do_train = flags[0].item()
args.do_valid = flags[1].item()
args.do_test = flags[2].item()
args.eval_total_samples = flags[3].item()
return train_dataloader, valid_dataloader, test_dataloader
def build_train_valid_test_data_iterators(
build_train_valid_test_datasets_provider):
"""Build pretraining data iterators."""
args = get_args()
# Build loaders.
train_dataloader, valid_dataloader, test_dataloader = \
build_train_valid_test_data_loaders(
build_train_valid_test_datasets_provider)
# Build iterators.
dl_type = args.dataloader_type
assert dl_type in ['single', 'cyclic']
if train_dataloader is not None:
train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(train_dataloader))
else:
train_data_iterator = None
if valid_dataloader is not None:
valid_data_iterator = iter(valid_dataloader) if (dl_type == 'single' and args.eval_iters != -1) \
else iter(cyclic_iter(valid_dataloader))
else:
valid_data_iterator = None
if test_dataloader is not None:
test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(test_dataloader))
else:
test_data_iterator = None
return train_data_iterator, valid_data_iterator, test_data_iterator
|