File size: 16,895 Bytes
7ef6853 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""General utilities."""
import sys
import os
import torch
from torch.nn.parallel import DistributedDataParallel as torchDDP
from deepspeed.accelerator import get_accelerator
if get_accelerator().device_name() == 'cuda':
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
from megatron import (
get_args,
get_adlr_autoresume,
get_num_microbatches
)
from megatron.core import mpu
from megatron.core.tensor_parallel import param_is_not_tensor_parallel_duplicate
from megatron.model.module import param_is_not_shared
from megatron.model.rotary_pos_embedding import RotaryEmbedding
try:
from habana_frameworks.torch.hpex.experimental.transformer_engine import recipe
except (ImportError, ModuleNotFoundError):
recipe = None
def update_rotary_pos_emb(seq_length):
args = get_args()
rotary_dim = args.hidden_size // args.num_attention_heads \
if args.kv_channels is None else args.kv_channels
if args.rotary_percent < 1.0:
rotary_dim = int(rotary_dim * args.rotary_percent)
# partial rotary embeddings, which is better than full rotary
# Wang and Komatsuzaki et al
# https://github.com/kingoflolz/mesh-transformer-jax/
rotary_pos_emb = RotaryEmbedding(rotary_dim)(seq_length).to(
get_accelerator().current_device_name())
args.rotary_pos_emb = rotary_pos_emb
def unwrap_model(model, module_instances=(torchDDP)):
return_list = True
if not isinstance(model, list):
model = [model]
return_list = False
unwrapped_model = []
for model_module in model:
while isinstance(model_module, module_instances):
model_module = model_module.module
unwrapped_model.append(model_module)
if not return_list:
return unwrapped_model[0]
return unwrapped_model
def calc_params_l2_norm(model):
"""Calculate l2 norm of parameters """
args = get_args()
if not isinstance(model, list):
model = [model]
# Remove duplicate params.
params_data = []
for model_ in model:
for param in model_.parameters():
is_not_shared = param_is_not_shared(param)
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
if is_not_shared and is_not_tp_duplicate:
if args.bf16:
params_data.append(param.data.float())
else:
params_data.append(param.data)
# Calculate norm
dummy_overflow_buf = get_accelerator().IntTensor([0])
if get_accelerator().device_name() == 'cuda':
norm, _ = multi_tensor_applier(
amp_C.multi_tensor_l2norm,
dummy_overflow_buf,
[params_data],
False # no per-parameter norm
)
else :
norm = torch.norm(params_data,p=2.0)
norm_2 = norm * norm
# Sum across all model-parallel GPUs.
torch.distributed.all_reduce(norm_2,
op=torch.distributed.ReduceOp.SUM,
group=mpu.get_model_parallel_group())
return norm_2.item() ** 0.5
def average_losses_across_data_parallel_group(losses):
"""Reduce a tensor of losses across all GPUs."""
averaged_losses = torch.cat(
[loss.clone().detach().view(1) for loss in losses])
torch.distributed.all_reduce(averaged_losses,
group=mpu.get_data_parallel_group())
averaged_losses = averaged_losses / \
torch.distributed.get_world_size(group=mpu.get_data_parallel_group())
return averaged_losses
def report_memory(name):
"""Simple GPU memory report."""
mega_bytes = 1024.0 * 1024.0
string = name + ' memory (MB)'
string += ' | allocated: {}'.format(
get_accelerator().memory_allocated() / mega_bytes)
string += ' | max allocated: {}'.format(
get_accelerator().max_memory_allocated() / mega_bytes)
string += ' | reserved: {}'.format(
get_accelerator().memory_reserved() / mega_bytes)
string += ' | max reserved: {}'.format(
get_accelerator().max_memory_reserved() / mega_bytes)
if mpu.get_data_parallel_rank() == 0:
print("[Rank {}] {}".format(torch.distributed.get_rank(), string),
flush=True)
def print_params_min_max_norm(optimizer, iteration):
"""Print min, max, and norm of all parameters."""
index = 0
rank = torch.distributed.get_rank()
string = 'iteration, rank, index, tensor-model-parallel, min, max, norm\n'
optimizer_ = optimizer.optimizer
for param_group in optimizer_.param_groups:
for param in param_group['params']:
index += 1
min_ = param.data.min()
max_ = param.data.max()
norm = torch.linalg.norm(param.data)
string += '{:7d}, {:4d}, {:4d}, {:2d}, '.format(
iteration, rank, index, int(param.tensor_model_parallel))
string += '{:.6E}, {:.6E}, {:.6E}\n'.format(min_, max_, norm)
print(string, flush=True)
def check_adlr_autoresume_termination(iteration, model,
optimizer, opt_param_scheduler):
"""Check for autoresume signal and exit if it is received."""
from megatron.checkpointing import save_checkpoint
args = get_args()
autoresume = get_adlr_autoresume()
# Add barrier to ensure consistnecy.
torch.distributed.barrier()
if autoresume.termination_requested():
if args.save:
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
print_rank_0(">>> autoresume termination request found!")
if torch.distributed.get_rank() == 0:
autoresume.request_resume()
print_rank_0(">>> training terminated. Returning")
sys.exit(0)
def get_ltor_masks_and_position_ids(data,
eod_token,
reset_position_ids,
reset_attention_mask,
eod_mask_loss,
skip_mask=False,
dummy_sample=None,
labels=None):
"""Build masks and position id for left to right model."""
# Extract batch size and sequence length.
micro_batch_size, seq_length = data.size()
# Attention mask (lower triangular).
if reset_attention_mask:
att_mask_batch = micro_batch_size
else:
att_mask_batch = 1
attention_mask = None
if not skip_mask:
attention_mask = torch.tril(torch.ones(
(att_mask_batch, seq_length, seq_length), device=data.device)).view(att_mask_batch, 1, seq_length, seq_length)
# Loss mask.
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
if eod_mask_loss:
loss_mask[data == eod_token] = 0.0
if dummy_sample is not None:
loss_mask[dummy_sample.bool()] = 0.0
if labels is not None:
loss_mask[labels == -1] = 0.0
# Position ids.
position_ids = torch.arange(seq_length, dtype=torch.long,
device=data.device)
position_ids = position_ids.unsqueeze(0).expand_as(data)
# We need to clone as the ids will be modifed based on batch index.
if reset_position_ids:
position_ids = position_ids.clone()
if reset_position_ids or reset_attention_mask:
# Loop through the batches:
for b in range(micro_batch_size):
# Find indecies where EOD token is.
eod_index = position_ids[b, data[b] == eod_token]
# Detach indecies from positions if going to modify positions.
if reset_position_ids:
eod_index = eod_index.clone()
# Loop through EOD indecies:
prev_index = 0
for j in range(eod_index.size()[0]):
i = eod_index[j]
# Mask attention loss.
if reset_attention_mask and not skip_mask:
attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
# Reset positions.
if reset_position_ids:
position_ids[b, (i + 1):] -= (i + 1 - prev_index)
prev_index = i + 1
# Convert attention mask to binary:
if not skip_mask:
attention_mask = (attention_mask < 0.5)
return attention_mask, loss_mask, position_ids
def print_rank_0(message):
"""If distributed is initialized, print only on rank 0."""
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
print(message, flush=True)
else:
print(message, flush=True)
def is_last_rank():
return torch.distributed.get_rank() == (
torch.distributed.get_world_size() - 1)
def print_rank_last(message):
"""If distributed is initialized, print only on last rank."""
if torch.distributed.is_initialized():
if is_last_rank():
print(message, flush=True)
else:
print(message, flush=True)
def is_aml():
# Are we running inside an Azure Machine Learning (AML) environment?
return 'AZUREML_EXPERIMENT_ID' in os.environ
def is_rank_0():
"""Check whether it is rank 0. For AML, check if it is rank 0 of a node"""
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0 or (
is_aml() and torch.distributed.get_rank() % get_accelerator().device_count() == 0
):
return True
else:
return False
else:
return True
def get_parameters_in_billions(model):
gpus_per_model = torch.distributed.get_world_size(group=mpu.get_model_parallel_group())
approx_parameters_in_billions = sum([sum([p.ds_numel if hasattr(p,'ds_id') else p.nelement() for p in model_module.parameters()])
for model_module in model])
return approx_parameters_in_billions*gpus_per_model/(1e9)
def throughput_calculator(model, args, iteration_time, total_iterations):
batch_size = args.micro_batch_size * get_num_microbatches() * args.data_parallel_size
approx_parameters_in_billions = None if (model is None) else get_parameters_in_billions(model)
elapsed_time_per_iter = iteration_time/total_iterations
samples_per_second = batch_size / elapsed_time_per_iter
#flops calculator
hidden_size = args.hidden_size
num_attention_heads = args.num_attention_heads
head_dim = hidden_size // num_attention_heads
ffn_hidden_size = args.ffn_hidden_size
num_layers = args.num_layers
vocab_size = args.padded_vocab_size
gqa = args.num_attention_heads // args.num_key_value_heads
ffn_multiplier = 3 if args.swiglu else 2
macs_per_flops = 2
# General TFLOPs formula (borrowed from Equation 3 in Section 5.1 of
# https://arxiv.org/pdf/2104.04473.pdf).
# correction has been made to TFLOPs formula due to incorrect behavior
# observed with selective recompute when GQA not used and for all with GQA
seq_len = args.seq_length
if hasattr(args, 'actual_seq_length'):
seq_len = args.actual_seq_length
pre_and_post_mha_gemm_macs = batch_size * num_layers * (1 + (2 // gqa) + 1) * (hidden_size**2) * seq_len
mha_bgemm_macs = batch_size * num_layers * 2 * head_dim * num_attention_heads * (seq_len**2)
ffn_gemm_macs = batch_size * num_layers * ffn_multiplier * ffn_hidden_size * hidden_size * seq_len
logit_lmhead_gemm_macs = batch_size * vocab_size * hidden_size * seq_len
fwd_macs = pre_and_post_mha_gemm_macs + mha_bgemm_macs + ffn_gemm_macs + logit_lmhead_gemm_macs
bwd_macs = 2 * fwd_macs
fwd_bwd_macs = fwd_macs + bwd_macs
if (hasattr(args, 'checkpoint_activations') and args.checkpoint_activations) or (hasattr(args, 'recompute_granularity') and args.recompute_granularity == 'full'):
fwd_bwd_macs += fwd_macs
if hasattr(args, 'recompute_granularity') and args.recompute_granularity == 'selective':
fwd_bwd_macs += mha_bgemm_macs
flops_per_iteration = fwd_bwd_macs * macs_per_flops
tflops = flops_per_iteration / (elapsed_time_per_iter * args.world_size * (10**12))
return samples_per_second, tflops, approx_parameters_in_billions
def checkpoint_throughput_calculator(model, latency_second):
approx_parameters_in_billions = get_parameters_in_billions(model)
checkpoint_multiplier = 14 # fp16 weights (2), fp32 weights (4), fp32 momentum (4), fp32 variance (4)
checkpoint_GB = approx_parameters_in_billions * checkpoint_multiplier
GB_per_second = checkpoint_GB / latency_second
print_rank_0(f"Checkpoint Save GB: {round(checkpoint_GB, 3)}, GB/Sec: {round(GB_per_second,2)}, Latency(second): {round(latency_second, 3)}")
def get_fingerprint_header():
return f"{'min':^13} {'max':^13} {'mean':^13} {'l2 norm':^12} metadata"
def get_fingerprint(p):
return f"{p.min():13.6e} {p.max():13.6e} {p.mean():13.6e} {p.norm():12.6e}"
def dump_position_embed_weights(preamble, iteration, model):
# return
from deepspeed.utils import safe_get_full_fp32_param
tp_rank = mpu.get_tensor_model_parallel_rank()
pp_rank = mpu.get_pipeline_model_parallel_rank()
dp_rank = mpu.get_data_parallel_rank()
get_fingerprint_header()
for n, p in model[0].named_parameters():
if 'position_embeddings' in n:
tag = "pos_embed"
elif "word_embeddings" in n:
tag = "word_embed"
else:
continue
print(f"iter {iteration} {preamble} {tag} lp {tp_rank}/{pp_rank}/{dp_rank}: {get_fingerprint(p)} {p.shape}\n")
fp32_value = safe_get_full_fp32_param(p)
if fp32_value is not None:
print(f"iter {iteration} {preamble} {tag} hp {tp_rank}/{pp_rank}/{dp_rank}: {get_fingerprint(fp32_value)} {p.shape}\n")
def dump_weights(preamble, iteration, model, optimizer, tensor=None):
# return
tp_rank = mpu.get_tensor_model_parallel_rank()
pp_rank = mpu.get_pipeline_model_parallel_rank()
dp_rank = mpu.get_data_parallel_rank()
dp_size = mpu.get_data_parallel_world_size()
fn = f"debug-bf16-{iteration}-pp{pp_rank}-tp{tp_rank}-dp{dp_rank}-{preamble}.txt"
# only care for first and last pp stages and dp0 tp0
#if not (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()):
# return
#if not (tp_rank == 0 and dp_rank == 0):
# return
if tensor is not None:
orig_tensor = tensor
if hasattr(tensor, "_hp_param"):
numel = tensor._hp_param.numel() # // dp_size
tensor = tensor.flatten().narrow(0, 0, numel)
#print(fn)
with open(fn, "w") as fh:
fh.write(f"{get_fingerprint_header()}\n")
if tensor is not None:
fh.write(f"{get_fingerprint(tensor)} tensor {tensor.shape}\n")
else:
for n, p in model[0].named_parameters():
fh.write(f"{get_fingerprint(p)} {n} {p.shape}\n")
return
# until we figure out how to dump the actual fp32 values don't do this
fn = f"debug-fp32-{iteration}-pp{pp_rank}-tp{tp_rank}-dp{dp_rank}-{preamble}.txt"
with open(fn, "w") as fh:
fh.write(f"{get_fingerprint_header()}\n")
if tensor is not None:
tensor = orig_tensor
if hasattr(tensor, "_hp_param"):
fh.write(f"{get_fingerprint(tensor._hp_param)} tensor {tensor._hp_param.shape}\n")
#fh.write(f"{get_fingerprint(tensor._hp_grad)} tensor grad\n")
else:
fh.write(f"{get_fingerprint(tensor)} tensor {tensor.shape}\n")
#fh.write(f"{get_fingerprint(tensor.grad)} tensor grad\n")
else:
if hasattr(model[0].module.tied_modules, "embed"):
p = model[0].module.tied_modules.embed.word_embeddings.weight._hp_param
fh.write(f"{get_fingerprint(p)} module.tied_modules.embed.word_embeddings.weight._hp_param {p.shape}\n")
def found_kill_switch():
args = get_args()
if args.kill_switch_path is not None and os.path.exists(args.kill_switch_path):
return True
else:
return False
FP8_RECIPE=None
def get_fp8_recipe(args):
global FP8_RECIPE
if FP8_RECIPE is None:
if args.fp8_e5m2:
fp8_format = recipe.Format.E5M2
elif args.fp8_hybrid:
fp8_format = recipe.Format.HYBRID
fp8_interval = get_args().fp8_interval
FP8_RECIPE = recipe.DelayedScaling(
margin=args.fp8_margin,
interval=fp8_interval,
fp8_format=fp8_format,
amax_history_len=args.fp8_amax_history_len,
amax_compute_algo=args.fp8_amax_compute_algo,
reduce_amax=False,
)
return FP8_RECIPE |