File size: 20,231 Bytes
6c639a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# This code is originally from https://github.com/bigscience-workshop/Megatron-DeepSpeed
# under the license https://huggingface.co/spaces/bigscience/license

from functools import reduce
from logging import logMultiprocessing
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir,os.path.pardir)))

from lm_eval.models.gpt2 import GPT2LM
from lm_eval import evaluator, tasks, utils
from lm_eval.base import CacheHook
from tqdm import tqdm
import torch.nn.functional as F

from lm_eval.tasks import ALL_TASKS
from pretrain_gpt import model_provider
import numpy as np
import time

import torch
from megatron import get_args
from megatron import print_rank_0
from megatron import get_tokenizer
from megatron.core.enums import ModelType
from megatron.core import mpu
from megatron.training import setup_model_and_optimizer, get_model
from megatron.core.tensor_parallel.mappings import gather_from_tensor_model_parallel_region

from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
from megatron.p2p_communication import recv_forward, send_forward
import pickle
import json

from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model.distributed import DistributedDataParallel as LocalDDP
from megatron.model.module import Float16Module
from deepspeed.runtime.pipe import schedule
from deepspeed.accelerator import get_accelerator

class EvalHarnessAdaptor(GPT2LM):
    def __init__(self, model, tokenizer):
        args = get_args()
        self.args = args
        self.model = model
        self.tokenizer = tokenizer
        self.VOCAB_SIZE = tokenizer.vocab_size
        self.EOT_TOKEN_ID = tokenizer.eod

        self._max_length = args.seq_length

        # For ds we split into mini batches and then micro batches to keep pipelining api happy.
        # With Megatron we just go to micro_batches directly
        self._batch_size = args.micro_batch_size

        self.cache_hook = CacheHook(None)
        self.is_main = args.rank == 0
        self.is_local_main = args.local_rank == 0
        self._device = get_accelerator().current_device_name()
        self.is_model_parallel = mpu.get_tensor_model_parallel_world_size() > 1
        self.is_pipe_parallel = mpu.get_pipeline_model_parallel_world_size() > 1
        self.is_data_parallel = mpu.get_data_parallel_world_size() > 1
        self.adaptive_seq_len = args.adaptive_seq_len
        if self.is_data_parallel and args.moe_expert_parallel_size == 1: # For MoE model, allow a "fake data parallel" in order to partition model into multiple gpus
            raise NotImplementedError("Data parallelism is currently not supported for evaluation")

        self.is_last_stage = True if not self.is_pipe_parallel else mpu.is_pipeline_last_stage()  # only the last stage of the pipeline model will receive the logits

    @property
    def max_length(self):
        return self._max_length

    @property
    def batch_size(self):
        return self._batch_size

    @property
    def device(self):
        return self._device


    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
                context_enc = [self.EOT_TOKEN_ID]
            else:
                context_enc = self.tokenizer_encode(context)

            continuation_enc = self.tokenizer_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
        # TODO: automatic batch size detection for vectorization

        loglikelihoods = []
        with torch.no_grad():
            for string, in tqdm(requests):
                rolling_token_windows = list(map(utils.make_disjoint_window, utils.get_rolling_token_windows(
                    token_list=self.tokenizer_encode(string),
                    prefix_token=self.EOT_TOKEN_ID,
                    max_seq_len=self.max_length,
                    context_len=1,
                )))

                rolling_token_windows = [(None,) + x for x in rolling_token_windows]

                # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for that
                string_nll = self._loglikelihood_tokens(rolling_token_windows, disable_tqdm=True)

                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

                string_nll = sum(string_nll)
                loglikelihoods.append(string_nll)

        return loglikelihoods

    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        disable_tqdm = disable_tqdm if self.is_main else True
        res = []
        res_len = 0  # storing the result length for later
        self.model.eval()
        with torch.no_grad():
            def _collate(x):
                toks = x[1] + x[2]
                return (-len(toks), tuple(toks))

            reord = utils.Reorderer(requests, _collate)
            for chunk in utils.chunks(tqdm(reord.get_reordered(), disable=disable_tqdm), self.batch_size):
                inps, contlens, inplens, padding_length = [], [], [], None
                for _, context_enc, continuation_enc in chunk:
                    # when too long to fit in context, truncate from the left
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1):][:-1]
                        , dtype=torch.long).to(self.device)
                    inplen, = inp.shape

                    cont = continuation_enc

                    # since in _collate we make sure length is descending, the longest is always the first one.
                    padding_length = padding_length if padding_length is not None else inplen
                    if not self.adaptive_seq_len:
                        padding_length = self.max_length
                    # pad to length
                    inp = torch.cat([
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(inp.device)  # [padding_length - seq]
                    ], dim=0)

                    inps.append(inp.unsqueeze(0))

                    contlens.append(cont)
                    inplens.append(inplen)

                logits = self._model_call(torch.cat(inps, dim=0))
                res_len += len(chunk)
                if logits is not None:
                    multi_logits = F.log_softmax(logits, dim=-1).cpu()  # [batch, seq, vocab]

                    for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(chunk, multi_logits, inps, inplens, contlens):
                        contlen = len(cont_toks)
                        logits = logits[inplen - contlen:inplen].unsqueeze(0)  # [1, seq, vocab]
                        greedy_tokens = logits.argmax(dim=-1)
                        # cont_toks :: [1, seq]
                        cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(0)
                        max_equal = (greedy_tokens == cont_toks).all()
                        # last_token_slice = logits[:, -1, :].squeeze(0).tolist()

                        logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(-1)  # [1, seq]
                        answer = (float(logits.sum()), bool(max_equal))
                        # partial caching
                        if cache_key is not None:
                            self.cache_hook.add_partial("loglikelihood", cache_key, answer)
                        res.append(answer)

        if not mpu.is_pipeline_last_stage():
            # @HACK: To make the eval harness happy on threads that don't have access to the results.
            #        We just randomly generate some data.
            res = [(np.random.rand(), np.random.rand()>0.5) for _ in requests]

        return reord.get_original(res)

    def create_model_inputs(self, tokens):
        args = get_args()

        attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
            tokens,
            self.EOT_TOKEN_ID,
            args.reset_position_ids,
            args.reset_attention_mask,
            args.eod_mask_loss)

        return (tokens, position_ids, attention_mask), (tokens, loss_mask)

    def _model_call(self, inps):
        args = get_args()

        if args.deepspeed:
            if args.no_pipeline_parallel:
                # self.model.set_batch_fn(self.create_model_inputs)
                # round up to multiple of micro_batch_size
                new_size = ((len(inps) + args.micro_batch_size-1)  // args.micro_batch_size) * args.micro_batch_size
                padded = F.pad(inps, (0, 0, 0, new_size-len(inps)), value = 0)
                # dummy data iterator for pipelining.
                data_iterator = list((torch.stack(inp) for inp in utils.chunks(padded, args.micro_batch_size)))
                self.model.micro_batches = len(data_iterator)
                # output = self.model.eval_batch(iter(data_iterator), compute_loss = False, reduce_output = None)
                output = []
                for tokens in data_iterator:
                    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
                                                                tokens,
                                                                self.EOT_TOKEN_ID,
                                                                args.reset_position_ids,
                                                                args.reset_attention_mask,
                                                                args.eod_mask_loss)
                    a_output, *other_losses = self.model(tokens,
                        position_ids,
                        attention_mask,
                        tokentype_ids=None)
                    output.append(a_output)

                if output is not None:
                    output = torch.cat(output, 0)[:len(inps)]
                else:
                    output = None

                # hack #2 for adaptive_seq_len to work as total_loss gets appended to and shapes aren't the same
                if args.adaptive_seq_len:
                    self.model.total_loss = None
            else:
                self.model.set_batch_fn(self.create_model_inputs)
                # round up to multiple of micro_batch_size
                new_size = ((len(inps) + args.micro_batch_size-1)  // args.micro_batch_size) * args.micro_batch_size
                padded = F.pad(inps, (0, 0, 0, new_size-len(inps)), value = 0)
                # dummy data iterator for pipelining.
                data_iterator = list((torch.stack(inp) for inp in utils.chunks(padded, args.micro_batch_size)))
                self.model.micro_batches = len(data_iterator)
                output = self.model.eval_batch(iter(data_iterator), compute_loss = False, reduce_output = None)


                if output is not None:
                    output = torch.cat(output, 0)[:len(inps)]
                else:
                    output = None

                # hack #2 for adaptive_seq_len to work as total_loss gets appended to and shapes aren't the same
                if args.adaptive_seq_len:
                    self.model.total_loss = None
        else:
            # Since the shape of the micro-batch will change
            # We need set the correct shapes here
            # So that latter pipeline stages knows which shapes to expect.
            # Otherwise we will deadlock.

            args.micro_batch_size = len(inps)
            args.seq_length = len(inps[0])
            args.max_position_embeddings = args.seq_length

            input_tensor = recv_forward()

            # Forward pass through the model.
            unwrapped_model = unwrap_model(self.model, (torchDDP, LocalDDP, Float16Module))
            unwrapped_model.set_input_tensor(input_tensor)
            output = self.model(*self.create_model_inputs(inps)[0])
            send_forward(output)

        if mpu.is_pipeline_last_stage():
            return gather_from_tensor_model_parallel_region(output)[..., :self.tokenizer.vocab_size]
        else:
            return None

    def tokenizer_encode(self, text):
        """Tokenize text *without* adding special tokens."""
        # Splitting this into its own method in case we need to handle special cases for different tokenizers
        from megatron.tokenizer.gpt2_tokenization import GPT2Tokenizer
        if isinstance(self.tokenizer.tokenizer, GPT2Tokenizer):
            return self.tokenizer.tokenizer.encode(text)
        else:
            return self.tokenizer.tokenizer.encode(text, add_special_tokens=False)


from megatron.initialize import initialize_megatron
import megatron

from tools.convert_checkpoint.deepspeed_checkpoint import DeepSpeedCheckpoint
from tools.convert_checkpoint.deepspeed_to_megatron import _create_rank_checkpoint

def override_args(args, override_args, skip_keys, skip_if_specified_keys):
    for k, v in vars(override_args).items():
        if k in skip_keys:
            continue
        if k in skip_if_specified_keys and getattr(args, k) is not None:
            continue
        setattr(args, k, v)


# Note(Hesslow):
# The model loading is a bit convoluted.
# We want to parse out the model arguments from the checkpoint and use those to initialize megatron-ds.
#
# However megatron-ds expects its arguments on the command line.
# And at that point we don't know them.
#
# Instead we use Jasons way: we load the arguments form the checkpoint and then override _parse_args to return whatever args we want.
#
# If the checkpoint is old, some new arguments may have been introduced and the code will expect these arguments to exist.
# In order to support this we _first_ parse the arguments normally, and then override them with the arguments from the checkpoint.
# Keeping the default-value of newer arguments.
#
# We then use the megatron deepspeed converter to load the deepspeed checkpoints as if they we're megatron checkpoints.
def load_ds_checkpoint_and_setup_megatron(extra_args_provider):
    # parse the megatorn args. But wait with initalizing megatron.
    # avoid printing the arguments, since they will later be overridden.
    _print_args = megatron.arguments._print_args
    megatron.arguments._print_args = lambda *_args, **kwarg: None
    args = parse_args(extra_args_provider=extra_args_provider)

    ds_checkpoint = DeepSpeedCheckpoint(args.load,
                                        tp_degree=args.tensor_model_parallel_size,
                                        pp_degree=args.pipeline_model_parallel_size,
                                        no_pp=args.no_pipeline_parallel)


    cp_args = ds_checkpoint.get_args()
    # Merge the current args with the checkpoint args.
    skip_keys = ['world_size', 'rank', 'local_rank','device_count', 'micro_batch_size','global_batch_size', 'batch_size', 'tensorboard_dir', 'deepspeed', 'deepspeed_config',
                     'data_parallel_size', 'pipeline_model_parallel_size', 'tensor_model_parallel_size', 'moe_expert_parallel_size', 'moe_token_dropping', 'load', 'rampup_batch_size', 'iteration', 'inference', 'random_ltd']

    skip_if_specified = ['merge_file', 'vocab_file']

    if args.eval_fp32:
        cp_args.fp16 = False
        cp_args.bf16 = False
        cp_args.params_dtype = torch.float32

    cp_args.tokenizer_type = 'GPT2BPETokenizer'

    override_args(args, cp_args, skip_keys, skip_if_specified)

    # stop megatron from reparsing the arguments.
    megatron.arguments.parse_args = lambda *_args, **kwarg: args
    megatron.global_vars._ensure_var_is_not_initialized = lambda *_args, **kwarg: None
    megatron.global_vars._GLOBAL_ARGS = args

    initialize_megatron(extra_args_provider=extra_args_provider)
    megatron.global_vars._GLOBAL_ARGS = args
    torch.distributed.barrier()

    # Initializing megatron will update eg. tokenizer size. Override again.
    override_args(args, cp_args, skip_keys, skip_if_specified)

    # print final arguments.
    _print_args("eval_harness arguments", args)
    if args.deepspeed:

        # Hack #3:
        # Loading pipelined models in deepspeed with different TP than it was originally trained on fails
        # due to a sanity check, that makes sure that all state_dicts that we merge contains attention layers.
        # This, however, is not true for pipelining when we will merge the state_dict for the embeddings which
        # which does not contain these attention-specific keys.
        #
        # Deepspeed does however manage to load the model if we just turn off this sanity check.
        import deepspeed
        deepspeed.runtime.state_dict_factory.MegatronSDLoader.sanity_check = lambda self, ckpt_file_name: None


        cp_path = args.load
        args.load = None
        model, _, _ = setup_model_and_optimizer(model_provider, ModelType.encoder_or_decoder)
        model = model[0]
        zero_enabled = model._config.zero_enabled
        model._config.zero_enabled = False
        _, _ = model.load_checkpoint(cp_path, tag = '.', load_optimizer_states=False, load_lr_scheduler_states=False, load_module_only=True)
        model._config.zero_enabled = zero_enabled
    else:
        model = get_model(model_provider)[0]
        # Initialize megatron model using the parsed state dict.
        sd = _create_rank_checkpoint(ds_checkpoint, None, mpu.get_tensor_model_parallel_rank(), mpu.get_pipeline_model_parallel_rank(), True)

        model.load_state_dict(sd['model'], strict=True)

    if args.eval_fp32:
        model = model.float()

    torch.distributed.barrier()
    return model

def tasks_args(parser):
    """Provide extra arguments required for tasks."""
    group = parser.add_argument_group(title='Evaluation options')
    group.add_argument('--task_list', type=str, default = "all", help='Either "all" or comma separated list of tasks.')
    group.add_argument('--results_path', type=str, default = "./results.json", help='Path to where the results will be stored.')
    group.add_argument('--adaptive_seq_len',  default = False, action='store_true',
                       help='Should the sequence length be adapted to the batch during evaluation, if in fp16 the results will be slightly different due to numerical errors but greatly speed up evaluation.')
    group.add_argument('--num_fewshot', type=int, default = 0, help='Number of few-shot prompts.')
    group.add_argument('--eval_fp32',  default = False, action='store_true', help='Should the evaluation run in fp32')
    return parser

from megatron.arguments import parse_args

def main():
    start = time.time()
    model = load_ds_checkpoint_and_setup_megatron(extra_args_provider=tasks_args)

    args = get_args()
    if args.deepspeed and args.adaptive_seq_len:
        # adaptive_seq_len hack #1:
        # CL automatically enables reset_activation_shape() which allows us to change input shapes
        # and it also reshapes the attenion scores in attention_mask_func
        args.curriculum_learning_legacy = 1

    task_list = ALL_TASKS if args.task_list == 'all' else args.task_list.split(',')
    task_dict = tasks.get_task_dict(task_list)

    model.module.activation_checkpoint_interval = 0
    model._compute_loss = False
    model.fwd_outputs = []

    tokenizer = get_tokenizer()
    adaptor = EvalHarnessAdaptor(model, tokenizer)
    results = evaluator.evaluate(adaptor, task_dict, False, args.num_fewshot, None)

    if mpu.is_pipeline_last_stage() and mpu.get_tensor_model_parallel_rank() == 0:
        print(json.dumps(results, indent=2))
        with open(args.results_path, 'w') as outfile:
            json.dump(results, outfile, indent = 4)
    end = time.time()
    print("evaluation of {} ends in {:.2f} sec, or {:.2f} min, or {:.2f} hr".format(args.task_list, end-start, (end-start)/60.0, (end-start)/3600.0))

if __name__ == '__main__':
    main()