File size: 4,546 Bytes
7ef6853 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""GLUE finetuning/evaluation."""
from megatron import get_args
from megatron import print_rank_0
from megatron import get_tokenizer
from megatron.model.classification import Classification
from tasks.eval_utils import accuracy_func_provider
from tasks.finetune_utils import finetune, mse_forward_step
from megatron.arguments import core_transformer_config_from_args
def glue_classification(num_classes, Dataset,
name_from_datapath_func):
def train_valid_datasets_provider():
"""Build train and validation dataset."""
args = get_args()
tokenizer = get_tokenizer()
train_dataset = Dataset('training', args.train_data,
tokenizer, args.seq_length)
valid_dataset = Dataset('validation', args.valid_data,
tokenizer, args.seq_length)
return train_dataset, valid_dataset
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
args = get_args()
config = core_transformer_config_from_args()
print_rank_0('building classification model for {} ...'.format(
args.task))
model = Classification(config=config, num_classes=num_classes, num_tokentypes=2,
pre_process=pre_process, post_process=post_process)
return model
def metrics_func_provider():
"""Privde metrics callback function."""
def single_dataset_provider(datapath):
args = get_args()
tokenizer = get_tokenizer()
name = name_from_datapath_func(datapath)
return Dataset(name, [datapath], tokenizer, args.seq_length)
return accuracy_func_provider(single_dataset_provider)
args = get_args()
"""Finetune/evaluate."""
if args.task == 'STS-B':
finetune(train_valid_datasets_provider, model_provider,
forward_step=mse_forward_step,
end_of_epoch_callback_provider=metrics_func_provider)
else:
finetune(train_valid_datasets_provider, model_provider,
end_of_epoch_callback_provider=metrics_func_provider)
def main():
args = get_args()
if args.task == 'MNLI':
num_classes = 3
from tasks.glue.mnli import MNLIDataset as Dataset
def name_from_datapath(datapath):
return datapath.split('MNLI')[-1].strip(
'.tsv').strip('/').replace('_', '-')
elif args.task == 'QQP':
num_classes = 2
from tasks.glue.qqp import QQPDataset as Dataset
def name_from_datapath(datapath):
return datapath.split('QQP')[-1].strip(
'.tsv').strip('/').replace('_', '-')
elif args.task == 'QNLI':
num_classes = 2
from tasks.glue.qnli import QNLIDataset as Dataset
def name_from_datapath(datapath):
return datapath.split('QNLI')[-1].strip(
'.tsv').strip('/').replace('_', '-')
elif args.task == 'SST-2':
num_classes = 2
from tasks.glue.sst2 import SST2Dataset as Dataset
def name_from_datapath(datapath):
return datapath.split('SST-2')[-1].strip(
'.tsv').strip('/').replace('_', '-')
elif args.task == 'CoLA':
num_classes = 2
from tasks.glue.cola import CoLADataset as Dataset
def name_from_datapath(datapath):
return datapath.split('CoLA')[-1].strip(
'.tsv').strip('/').replace('_', '-')
elif args.task == 'STS-B':
num_classes = 1
from tasks.glue.stsb import STSBDataset as Dataset
def name_from_datapath(datapath):
return datapath.split('STS-B')[-1].strip(
'.tsv').strip('/').replace('_', '-')
elif args.task == 'MRPC':
num_classes = 2
from tasks.glue.mrpc import MRPCDataset as Dataset
def name_from_datapath(datapath):
return datapath.split('MRPC')[-1].strip(
'.tsv').strip('/').replace('_', '-')
elif args.task == 'RTE':
num_classes = 2
from tasks.glue.rte import RTEDataset as Dataset
def name_from_datapath(datapath):
return datapath.split('RTE')[-1].strip(
'.tsv').strip('/').replace('_', '-')
else:
raise NotImplementedError('GLUE task {} is not implemented.'.format(
args.task))
glue_classification(num_classes, Dataset, name_from_datapath)
|