File size: 4,546 Bytes
7ef6853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""GLUE finetuning/evaluation."""

from megatron import get_args
from megatron import print_rank_0
from megatron import get_tokenizer
from megatron.model.classification import Classification
from tasks.eval_utils import accuracy_func_provider
from tasks.finetune_utils import finetune, mse_forward_step
from megatron.arguments import core_transformer_config_from_args


def glue_classification(num_classes, Dataset,
                        name_from_datapath_func):

    def train_valid_datasets_provider():
        """Build train and validation dataset."""
        args = get_args()
        tokenizer = get_tokenizer()

        train_dataset = Dataset('training', args.train_data,
                                tokenizer, args.seq_length)
        valid_dataset = Dataset('validation', args.valid_data,
                                tokenizer, args.seq_length)

        return train_dataset, valid_dataset

    def model_provider(pre_process=True, post_process=True):
        """Build the model."""
        args = get_args()
        config = core_transformer_config_from_args()

        print_rank_0('building classification model for {} ...'.format(
            args.task))
        model = Classification(config=config, num_classes=num_classes, num_tokentypes=2,
                               pre_process=pre_process, post_process=post_process)

        return model

    def metrics_func_provider():
        """Privde metrics callback function."""
        def single_dataset_provider(datapath):
            args = get_args()
            tokenizer = get_tokenizer()

            name = name_from_datapath_func(datapath)
            return Dataset(name, [datapath], tokenizer, args.seq_length)
        return accuracy_func_provider(single_dataset_provider)

    args = get_args()
    """Finetune/evaluate."""
    if args.task == 'STS-B':
        finetune(train_valid_datasets_provider, model_provider,
                forward_step=mse_forward_step,
                end_of_epoch_callback_provider=metrics_func_provider)
    else:
        finetune(train_valid_datasets_provider, model_provider,
                end_of_epoch_callback_provider=metrics_func_provider)


def main():
    args = get_args()

    if args.task == 'MNLI':

        num_classes = 3
        from tasks.glue.mnli import MNLIDataset as Dataset

        def name_from_datapath(datapath):
            return datapath.split('MNLI')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    elif args.task == 'QQP':

        num_classes = 2
        from tasks.glue.qqp import QQPDataset as Dataset

        def name_from_datapath(datapath):
            return datapath.split('QQP')[-1].strip(
                '.tsv').strip('/').replace('_', '-')
    elif args.task == 'QNLI':

        num_classes = 2
        from tasks.glue.qnli import QNLIDataset as Dataset

        def name_from_datapath(datapath):
            return datapath.split('QNLI')[-1].strip(
                '.tsv').strip('/').replace('_', '-')
    elif args.task == 'SST-2':

        num_classes = 2
        from tasks.glue.sst2 import SST2Dataset as Dataset

        def name_from_datapath(datapath):
            return datapath.split('SST-2')[-1].strip(
                '.tsv').strip('/').replace('_', '-')
    elif args.task == 'CoLA':

        num_classes = 2
        from tasks.glue.cola import CoLADataset as Dataset

        def name_from_datapath(datapath):
            return datapath.split('CoLA')[-1].strip(
                '.tsv').strip('/').replace('_', '-')
    elif args.task == 'STS-B':

        num_classes = 1
        from tasks.glue.stsb import STSBDataset as Dataset

        def name_from_datapath(datapath):
            return datapath.split('STS-B')[-1].strip(
                '.tsv').strip('/').replace('_', '-')
    elif args.task == 'MRPC':

        num_classes = 2
        from tasks.glue.mrpc import MRPCDataset as Dataset

        def name_from_datapath(datapath):
            return datapath.split('MRPC')[-1].strip(
                '.tsv').strip('/').replace('_', '-')
    elif args.task == 'RTE':

        num_classes = 2
        from tasks.glue.rte import RTEDataset as Dataset

        def name_from_datapath(datapath):
            return datapath.split('RTE')[-1].strip(
                '.tsv').strip('/').replace('_', '-')
    else:
        raise NotImplementedError('GLUE task {} is not implemented.'.format(
            args.task))

    glue_classification(num_classes, Dataset, name_from_datapath)