File size: 11,215 Bytes
6c639a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Prompting the pretrained language model to generate knowledge/response"""

import json
import torch
import requests
from nltk import word_tokenize
from megatron import get_args
from megatron import print_rank_0
from megatron import get_tokenizer
from megatron.core import mpu
from megatron.model import GPTModel
from megatron.training import get_model
from megatron.arguments import core_transformer_config_from_args
from megatron.checkpointing import load_checkpoint
from megatron.initialize import initialize_megatron
from megatron.text_generation import generate_and_post_process


def call_model_api(inputs, tokens_to_generate):
    """Calling the model api to get the output generations"""

    args = get_args()

    # The following is an example of using the Megatron API
    # You can also implement your own API function to place this part
    headers = {'Content-Type': 'application/json; charset=UTF-8'}
    data = {"prompts": [inputs], "tokens_to_generate": tokens_to_generate, "top_k": 1}
    data_json = json.dumps(data)
    outputs = requests.put(args.megatron_api_url, headers=headers, data=data_json).json()["text"][0]

    input_len = len(inputs)
    outputs = outputs[input_len:]
    outputs = outputs.split("\n")[0].strip()

    return outputs


def read_prompts(prompt_path, prompt_type, n_example):
    """Read prompt data"""

    if prompt_type == "knowledge":
        # prompts for the knowledge generation
        prompt_examples_dict = {}
        # read prompt_path
        with open(prompt_path, "r") as f:
            for i, line in enumerate(f):
                line = line.strip()
                line_dict = json.loads(line)
                key = list(line_dict.keys())[0]

                if key not in prompt_examples_dict:
                    prompt_examples = line_dict[key]
                    prompt = ""
                    for instance in prompt_examples:
                        instance = instance.strip()
                        prompt += instance + " \n"
                    prompt_examples_dict[key] = prompt

        return prompt_examples_dict

    else:
        # prompts for the response generation
        # read prompt_path
        prompt = ""
        with open(prompt_path, "r") as f:
            prompt_examples = f.readlines()
            prompt_examples = prompt_examples[:n_example]
            for instance in prompt_examples:
                instance = instance.strip()
                prompt += instance + " \n"

        return prompt


def generate_samples_by_calling_api():
    """ Generate outputs by calling"""
    args = get_args()
    assert args.prompt_type in ["knowledge", "response"], \
                "Please input a correct prompt type!"

    if args.prompt_type == "knowledge":
        # read knowledge generation prompts
        knwl_gen_prompt_dict = read_prompts(
            args.prompt_file, args.prompt_type, args.num_prompt_examples)

    else:
        resp_gen_prompt = read_prompts(
            args.prompt_file, args.prompt_type, args.num_prompt_examples)

    # read the test data
    fname = open(args.sample_input_file, "r")
    test_sample_list = fname.readlines()
    # create output file
    fname_out = open(args.sample_output_file, "w")

    # call the api to get the output generations
    for test_sample in test_sample_list:
        test_sample = test_sample.strip()
        splits = test_sample.split("\t")
        topic = splits[0]

        # prepare the inputs for the api
        if args.prompt_type == "knowledge":
            ## inputs = prompt + current test
            # get the prompt
            turns = splits[1].split(" [SEP] ")
            last_turn = turns[-1]
            key = topic + " " + last_turn
            inputs = knwl_gen_prompt_dict[key]

            # add current test
            inputs += "( " + last_turn + " ) " + topic + " =>"

        else:
            # inputs = prompt + current test
            # get the prompt
            inputs = resp_gen_prompt

            # add current test
            turns = splits[1].split(" [SEP] ")
            knowledge = splits[2]
            last_turn = turns[-1]
            last_turn = " ".join(word_tokenize(last_turn))
            knowledge = " ".join(word_tokenize(knowledge))
            knowledge = knowledge.strip()
            last_turn = last_turn.strip()
            inputs += "Topic: " + topic + ". "
            inputs += "User says: " + last_turn + " "
            inputs += "We know that: " + knowledge + " "
            inputs += "System replies:"

        # get the output generations from the api,
        # and write to the output file
        generations = call_model_api(inputs, args.out_seq_length)
        fname_out.write(generations)
        fname_out.write("\n")

    fname.close()
    fname_out.close()


def model_provider(pre_process=True, post_process=True):
    """Build the model."""

    config = core_transformer_config_from_args(get_args())

    print_rank_0('building GPT model ...')
    model = GPTModel(
        config=config,
        num_tokentypes=0,
        parallel_output=True,
        pre_process=pre_process,
        post_process=post_process
    )
    return model


def generate_samples_by_prompting_input_from_file(model):
    """Prompt a pretrained language model to generate knowledge/response"""

    # get tokenizer
    args = get_args()
    tokenizer = get_tokenizer()

    # Read the sample file and open the output file.
    assert args.sample_input_file is not None, \
        'sample input file is not provided.'
    if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
        fname = open(args.sample_input_file, "r")
        all_raw_text = fname.readlines()
        input_count = len(all_raw_text)
        if args.sample_output_file is None:
            sample_output_file = args.sample_input_file + ".out"
            print('`sample-output-file` not specified, setting '
                    'it to {}'.format(sample_output_file))
        else:
            sample_output_file = args.sample_output_file

        fname_out = open(sample_output_file, "w")

    # only two prompt types (i.e., knowledge and response) are allowed
    assert args.prompt_type in ["knowledge", "response"], \
                "Please input a correct prompt type!"

    # Read the prompt file
    if args.prompt_type == "knowledge":
        # read the prompts for the knowledge generation
        prompt_examples_dict = {}
        with open(args.prompt_file, "r") as f:
            for i, line in enumerate(f):
                line = line.strip()
                line_dict = json.loads(line)
                key = list(line_dict.keys())[0]

                # get the prompt examples based on the key
                if key not in prompt_examples_dict:
                    prompt_examples = line_dict[key]
                    prompt = ""
                    for instance in prompt_examples:
                        instance = instance.strip()
                        prompt += instance + " \n"
                    prompt_examples_dict[key] = prompt

    else:
        # read the prompts for the response generation
        # prompts are fixed for all test samples
        with open(args.prompt_file, "r") as f:
            prompt_examples = f.readlines()
            prompt_examples = prompt_examples[:args.num_prompt_examples]

            prompt = ""
            for instance in prompt_examples:
                instance = instance.strip()
                prompt += instance + " \n"

    input_pos = 0
    model.eval()
    # perform prompting
    with torch.no_grad():
        while True:
            raw_text_len = 0
            if mpu.is_pipeline_first_stage() \
               and mpu.get_tensor_model_parallel_rank() == 0:
                input_str = all_raw_text[input_pos]
                input_str = input_str.strip()
                splits = input_str.split("\t")
                topic = splits[0]

                if args.prompt_type == "knowledge":
                    # first add the prompt into the raw_text
                    turns = splits[1].split(" [SEP] ")
                    last_turn = turns[-1]
                    key = topic + " " + last_turn
                    raw_text = prompt_examples_dict[key]

                    # construct inputs for knowledge generation
                    # then add the constructed inputs into the raw_text
                    raw_text += "( " + last_turn + " ) " + topic + " =>"

                else:
                    # first add the prompt into the raw_text
                    raw_text = prompt

                    # construct inputs for response generation
                    # then add the constructed inputs into the raw_text
                    turns = splits[1].split(" [SEP] ")
                    knowledge = splits[2]
                    last_turn = turns[-1]
                    last_turn = " ".join(word_tokenize(last_turn))
                    knowledge = " ".join(word_tokenize(knowledge))
                    knowledge = knowledge.strip()
                    last_turn = last_turn.strip()
                    raw_text += "Topic: " + topic + ". "
                    raw_text += "User says: " + last_turn + " "
                    raw_text += "We know that: " + knowledge + " "
                    raw_text += "System replies:"

                input_pos += 1
                raw_text_len = len(raw_text)

            else:
                raw_text = "EMPTY TEXT"

            if input_pos % 100 == 0:
                print_rank_0("input_pos: %d" % input_pos)

            outputs = generate_and_post_process(
                        model=model,
                        prompts=[raw_text],
                        tokens_to_generate=args.out_seq_length,
                        top_k_sampling=1)
            prompts_plus_generations = outputs[0]
            prompts_plus_generations = prompts_plus_generations[0]

            # write the generated output to the output file
            if mpu.get_tensor_model_parallel_rank() == 0:
                if mpu.is_pipeline_first_stage():

                    generations = prompts_plus_generations[raw_text_len:]
                    generations = generations.split("\n")[0]
                    generations = generations.strip()
                    fname_out.write(generations)
                    fname_out.write("\n")

            raw_text = None
            if input_pos == input_count:
                return


def main():

    args = get_args()
    if args.api_prompt:
        # obtain the generations by calling the api
        generate_samples_by_calling_api()
        return

    if args.num_layers_per_virtual_pipeline_stage is not None:
        print("Interleaved pipeline schedule is not yet supported for text generation.")
        exit()

    # Set up model and load checkpoint.
    model = get_model(model_provider, wrap_with_ddp=False)
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]

    # perform the prompting
    generate_samples_by_prompting_input_from_file(model)