File size: 4,108 Bytes
0cd5102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Processing nmt data for finetuning."""

import argparse
import json
import multiprocessing
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))
import time
import torch
from megatron.tokenizer import build_tokenizer
from megatron.data import indexed_dataset


class Encoder(object):
    def __init__(self, args):
        self.args = args

    def initializer(self):
        # Use Encoder class as a container for global data
        Encoder.tokenizer = build_tokenizer(self.args)

    def encode(self, text):
        ids = {}
        ids = Encoder.tokenizer.tokenize(text)
        assert len(ids) > 0
        return ids, len(text)


def get_args():
    parser = argparse.ArgumentParser()
    group = parser.add_argument_group(title='input data')
    group.add_argument('--input', type=str, required=True,
                       help='Path to input JSON')

    group = parser.add_argument_group(title='tokenizer')
    group.add_argument('--tokenizer-type', type=str, default='YTTMTokenizer',
                       choices=['BertWordPieceLowerCase','BertWordPieceCase',
                                'GPT2BPETokenizer', 'SentencePieceTokenizer'],
                       help='What type of tokenizer to use.')
    group.add_argument('--vocab-file', type=str, default=None,
                       help='Path to the vocab file')
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file (if necessary).')

    group = parser.add_argument_group(title='output data')
    group.add_argument('--output-prefix', type=str, required=True,
                       help='Path to binary output file without suffix')
    group.add_argument('--dataset-impl', type=str, default='mmap',
                       choices=['lazy', 'cached', 'mmap'])

    group = parser.add_argument_group(title='runtime')
    group.add_argument('--workers', type=int, default=1,
                       help='Number of worker processes to launch')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Interval between progress updates')
    args = parser.parse_args()
    args.keep_empty = False

    # some default/dummy values for the tokenizer
    args.rank = 0
    args.make_vocab_size_divisible_by = 128
    args.tensor_model_parallel_size = 1
    args.vocab_extra_ids = 0

    return args

def main():
    args = get_args()
    startup_start = time.time()

    print("Opening", args.input)
    fin = open(args.input, 'r', encoding='utf-8')

    encoder = Encoder(args)
    tokenizer = build_tokenizer(args)
    pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
    encoded_sentences = pool.imap(encoder.encode, fin, 25)

    print(f"Vocab size: {tokenizer.vocab_size}")
    print(f"Output prefix: {args.output_prefix}")
    output_bin_file = "{}.bin".format(args.output_prefix)
    output_idx_file = "{}.idx".format(args.output_prefix)
    builder = indexed_dataset.make_builder(output_bin_file,
                                           impl=args.dataset_impl,
                                           vocab_size=tokenizer.vocab_size)

    startup_end = time.time()
    proc_start = time.time()
    total_bytes_processed = 0
    print("Time to startup:", startup_end - startup_start)

    for i, (sentence, bytes_processed) in enumerate(encoded_sentences, start=1):
        total_bytes_processed += bytes_processed
        builder.add_item(torch.IntTensor(sentence))
        # documents contain only one sentence.
        builder.end_document()
        if i % args.log_interval == 0:
            current = time.time()
            elapsed = current - proc_start
            mbs = total_bytes_processed/elapsed/1024/1024
            print(f"Processed {i} sentences",
                  f"({i/elapsed} sentences/s, {mbs} MB/s).",
                  file=sys.stderr)

    builder.finalize(output_idx_file)

if __name__ == '__main__':
    main()