File size: 17,334 Bytes
b92a520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.

from collections import defaultdict
from concurrent.futures import as_completed, ProcessPoolExecutor
from functools import reduce
import glob
import json
import numpy as np
import os
from pathlib import Path
import threading
import torch
from tqdm import tqdm
import types

from megatron import get_retro_args, print_rank_0
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
from megatron.tokenizer.tokenizer import (
    _BertWordPieceTokenizer,
    _GPT2BPETokenizer,
)
from tools.bert_embedding.utils import get_missing_blocks_by_rank
from tools.retro.external_libs import h5py
from tools.retro.utils import get_gpt_tokenizer, get_bert_tokenizer

from .utils import (
    get_indexed_dataset_infos,
    get_indexed_dataset_infos_path,
    get_individual_db_dir,
    get_individual_chunk_db,
    get_individual_doc_offsets,
    get_merged_dataset,
    get_merged_db_path_map,
    save_indexed_dataset_infos,
)


def init_indexed_dataset_infos():
    '''Gather meta-info about each indexed dataset.

    The returned info array allows for easy access to the configuration, and
    helps remove ambiguity.
    '''

    args = get_retro_args()

    assert len(args.data_path) % 2 == 0, \
        "currently, only blendable dataset is supported."

    # Dataset infos.
    infos = []
    for i in range(0, len(args.data_path), 2):
        ratio = float(args.data_path[i])
        prefix = args.data_path[i + 1]
        path = prefix + ".bin"
        name = os.path.basename(prefix)
        assert os.path.exists(path), "couldn't find '%s'." % path
        infos.append({
            "ratio" : ratio,
            "prefix" : prefix,
            "path" : path,
            "name" : name,
            "db_dir" : get_individual_db_dir(name),
            "dataset" : make_indexed_dataset(prefix, "mmap", True),
        })

    return infos


def build_partial_db(
        dataset_idx,
        n_datasets,
        indexed_dataset,
        block_id,
        n_blocks,
        block,
        proc_id,
        n_procs,
        tokenizers,
):
    '''Process a document index range of the indexed dataset.

    The chunk database is built in parallel blocks, since de-tokenizing &
    re-tokenizing for Bert-length computation is expensive. This method
    iterates each document and extracts sequential 'chunk-length' sequences
    from each document.
    '''

    args = get_retro_args()

    # Document start/end indexes.
    doc_range = block["range"]
    n_docs = doc_range[1] - doc_range[0]
    n_docs_per_proc = int(np.ceil(n_docs / n_procs))
    doc_start_id = doc_range[0] + proc_id * n_docs_per_proc
    doc_end_id = min(doc_range[1], doc_start_id + n_docs_per_proc)

    # Print progress.
    progress_proc_ids = set(range(n_procs)) \
        if torch.distributed.get_rank() == 0 else set()
    if proc_id in progress_proc_ids:
        print(" > building partial chunk db, proc %d / %d, docs %d:%d / %d."%(
            proc_id,
            n_procs,
            doc_start_id,
            doc_end_id,
            n_docs,
        ))

    # Progress bars (snapshot of overall progress).
    doc_id_iter = range(doc_start_id, doc_end_id)
    pbar = tqdm(doc_id_iter) \
        if proc_id in progress_proc_ids else \
           doc_id_iter

    # Iterate documents & parse chunks.
    chunk_db_valid = []
    chunk_db_invalid = []
    doc_size_map = {}
    for doc_id in pbar:

        # Progress description.
        try:
            pbar.set_description("ds %d / %d, block %d / %d, proc %d / %d." % (
                dataset_idx,
                n_datasets,
                block_id,
                n_blocks,
                proc_id,
                n_procs))
        except:
            pass

        # Remove EOD token.
        doc = indexed_dataset.get(doc_id)
        if doc[-1].item() == tokenizers.gpt.eod:
            doc = doc[:-1]
        doc_len = len(doc)

        # Chunk start/end indexes.
        chunk_start_idxs = list(range(0, doc_len, args.retro_gpt_chunk_length))
        chunk_end_idxs = [min(doc_len, s + args.retro_gpt_chunk_length)
                          for s in chunk_start_idxs]

        # Re-tokenize each chunk to Bert/Wordpiece (empty bert -> 'invalid').
        doc_size_map[doc_id] = 0
        for i, chunk_start_idx in enumerate(chunk_start_idxs):

            # Re-tokenize.
            chunk_end_idx = chunk_end_idxs[i]
            gpt_token_ids = indexed_dataset.get(
                idx=doc_id,
                offset=chunk_start_idx,
                length=chunk_end_idx - chunk_start_idx,
            )
            text = tokenizers.gpt.detokenize(gpt_token_ids.tolist())
            bert_token_ids = tokenizers.bert.tokenize(text)

            # 'Valid' for non-empty Bert chunks; 'invalid' otherwise.
            if len(bert_token_ids) == 0:
                _chunk_db = chunk_db_invalid
            else:
                _chunk_db = chunk_db_valid
                doc_size_map[doc_id] += 1
            _chunk_db.append((
                doc_id,
                chunk_start_idx,
                chunk_end_idx,
                len(bert_token_ids),
            ))

    return proc_id, chunk_db_valid, chunk_db_invalid, doc_size_map


def build_individual_db(dataset_idx, n_datasets, dataset_info, tokenizers):
    '''Process a single indexed dataset & extract chunks.'''

    args = get_retro_args()

    # Make directory.
    db_dir = dataset_info["db_dir"]
    os.makedirs(db_dir, exist_ok=True)

    # Indexed dataset.
    indexed_dataset = dataset_info["dataset"]

    # Missing db blocks.
    n_missing_world, missing_db_blocks = get_missing_blocks_by_rank(
        db_dir,
        len(indexed_dataset),
        args.retro_doc_block_size,
        validate=lambda f : f["chunks_valid"].shape == (0,) \
            or f["chunks_valid"].shape[1] == 4)

    # Prevent missing-path-write race condition.
    torch.distributed.barrier()

    if not missing_db_blocks:
        return

    # Num processes.
    if n_missing_world == 1:
        n_procs = 128
    elif n_missing_world <= 2:
        n_procs = 64
    elif n_missing_world <= 4:
        n_procs = 32
    elif n_missing_world <= 8:
        n_procs = 16
    else:
        n_procs = 8

    # Process documents in parallel.
    with ProcessPoolExecutor(max_workers=n_procs) as executor:
        for block_idx, block in enumerate(missing_db_blocks):

            if block is not None:

                db_path = block["path"]

                # Build partial dbs.
                print_rank_0(' > build partial dbs.')
                futures = []
                for proc_id in range(n_procs): # not true process id
                    futures.append(executor.submit(
                        build_partial_db,
                        dataset_idx,
                        n_datasets,
                        indexed_dataset,
                        block_idx,
                        len(missing_db_blocks),
                        block,
                        proc_id,
                        n_procs,
                        tokenizers,
                    ))
                partial_chunk_dbs = []
                for future in as_completed(futures):
                    partial_chunk_dbs.append(future.result())

                # Concatenate chunks.
                partial_chunk_dbs.sort(key=lambda item:item[0]) # sort by proc_id
                chunk_db_valid = [item
                                  for partial_chunk_db in partial_chunk_dbs
                                  for item in partial_chunk_db[1]]
                chunk_db_invalid = [item
                                    for partial_chunk_db in partial_chunk_dbs
                                    for item in partial_chunk_db[2]]

                # Convert to numpy.
                print_rank_0(' > converting chunk db to numpy.')
                chunk_db_valid = np.array(chunk_db_valid, dtype="uint32")
                chunk_db_invalid = np.array(chunk_db_invalid, dtype="uint32")

                # Document offsets.
                doc_sizes = [(d, s)
                             for partial_chunk_db in partial_chunk_dbs
                             for d, s in partial_chunk_db[3].items()]
                doc_sizes.sort(key = lambda item : item[0])
                doc_offsets = np.cumsum([item[1] for item in doc_sizes]) \
                                .astype("uint64")
                doc_offsets = np.stack((
                    np.array([item[0] for item in doc_sizes], dtype="uint64"),
                    doc_offsets), axis=1)

                # Save DB.
                print_rank_0(" > saving individual db.")
                with h5py.File(db_path, "w") as f:
                    dset = f.create_dataset("chunks_valid", data=chunk_db_valid)
                    dset = f.create_dataset("chunks_invalid",
                                            data=chunk_db_invalid)
                    dset = f.create_dataset("doc_offsets", data=doc_offsets)

            # Wait for all ranks to finish block.
            print_rank_0(" > waiting for all ranks to finish block.")
            torch.distributed.barrier()

    print_rank_0(" > finished saving individual db.")


def build_individual_dbs(indexed_dataset_infos):
    '''Iterate each indexed dataset & process its chunks.'''

    args = get_retro_args()

    # Tokenizers.
    tokenizers = types.SimpleNamespace(
        gpt=get_gpt_tokenizer(),
        bert=get_bert_tokenizer(),
    )

    # Build individual DBs.
    print_rank_0(" > build individual chunk dbs.")
    for ds_idx, ds_info in enumerate(indexed_dataset_infos):

        # Progress.
        print_rank_0(" > building individual db, dataset %d / %d ... '%s'." % (
            ds_idx,
            len(indexed_dataset_infos),
            ds_info["name"],
        ))

        # Process single dataset.
        build_individual_db(ds_idx, len(indexed_dataset_infos),
                            ds_info, tokenizers)


def update_chunk_counts(indexed_dataset_infos):
    '''Set n_chunks_train & n_chunks sampled for each individual DB.'''

    args = get_retro_args()

    if torch.distributed.get_rank() != 0:
        return

    # Data ratio sum (for setting index training chunks).
    data_ratio_sum = sum([ d["ratio"] for d in indexed_dataset_infos ])

    # Training split size (split at document level).
    train_fraction = float(args.split.split(",")[0]) / 100
    assert train_fraction > 0 and train_fraction <= 1

    # Set n_chunks (including n_chunks_sampled for unambiguity).
    print_rank_0(" > compute n_chunks.")
    for ds_index, ds_info in enumerate(indexed_dataset_infos):

        db_dir = ds_info["db_dir"]
        db_paths = sorted(glob.glob(db_dir + "/*.hdf5"))

        # Update counts.
        ds_info["n_docs"] = len(ds_info["dataset"].doc_idx) - 1
        ds_info["n_docs_train"] = int(train_fraction * ds_info["n_docs"])
        ds_info["n_chunks"] = 0 # previously, 'n_chunks_valid'
        ds_info["n_chunks_train"] = 0
        ds_info["n_chunks_invalid"] = 0
        for db_path in tqdm(db_paths, "%d/%d, %s" % (
                ds_index, len(indexed_dataset_infos), ds_info["name"])):
           with h5py.File(db_path, "r") as f:
                ds_info["n_chunks"] += len(f["chunks_valid"])
                ds_info["n_chunks_invalid"] += len(f["chunks_invalid"])
                ds_info["n_chunks_train"] += \
                    (np.copy(f["chunks_valid"][:, 0]) < ds_info["n_docs_train"]) \
                    .sum().item()

        ds_info["n_chunks_sampled"] = int(args.retro_index_ntrain *
                                          ds_info["ratio"] / data_ratio_sum)

        # Verify counts.
        assert ds_info["n_chunks_train"] <= ds_info["n_chunks"], \
            "n_train (%d) > n_total (%d)." % (
                ds_info["n_chunks_train"], ds_info["n_chunks"])
        assert ds_info["n_chunks_sampled"] <= ds_info["n_chunks_train"], \
            "n_sampled (%d) > n_train (%d)." % (
                ds_info["n_chunks_sampled"], ds_info["n_chunks_train"])


def merge_dbs(indexed_dataset_infos, db_type):
    '''Merge individual DBs into single DB.'''

    if torch.distributed.get_rank() != 0:
        return

    print(" > build %s chunk db." % db_type)

    # Count chunks.
    if db_type == "sampled":
        n_chunks_key = "n_chunks_sampled"
        n_docs_key = None
    elif db_type == "train":
        n_chunks_key = "n_chunks_train"
        n_docs_key = "n_docs_train"
    elif db_type == "valid":
        n_docs_key = None
    else:
        raise Exception("handle db_type '%s'." % db_type)

    if db_type == "valid":
        n_chunks = sum(m["n_chunks"] - m["n_chunks_train"]
                       for m in indexed_dataset_infos)
    else:
        n_chunks = sum(m[n_chunks_key] for m in indexed_dataset_infos)
        n_docs = None if n_docs_key is None else \
            sum(m[n_docs_key] for m in indexed_dataset_infos)

    # DB path.
    db_path = get_merged_db_path_map()[db_type]

    # Delete existing chunk db if incorrect size.
    if os.path.exists(db_path):

        try:

            f = h5py.File(db_path)
            n_alloc = len(f["chunks"])           # total allocated
            n_written = f["n_written"][0].item() # total written
            f.close()

            if n_chunks != n_alloc or n_chunks != n_written:
                os.remove(db_path)

        except Exception as e:
            if isinstance(e, OSError):
                os.remove(db_path)
            elif isinstance(e, KeyError):
                f.close()
                os.remove(db_path)
            else:
                raise e

    # Build merged chunk db.
    if not os.path.exists(db_path):

        os.makedirs(os.path.dirname(db_path), exist_ok=True)
        f = h5py.File(db_path, "w")

        # Initialize output arrays.
        merged_chunk_db = \
            f.create_dataset("chunks", (n_chunks, 5), dtype="uint32")
        merged_doc_offsets = None if n_docs_key is None else \
            f.create_dataset("doc_offsets", (n_docs, 3), dtype="uint64")
        n_written = f.create_dataset("n_written", (1,), dtype="uint64")
        n_written[0] = 0

        # Iterate indexed datasets & collect chunks.
        chunk_start_index = 0
        doc_start_index = 0
        doc_start_offset = 0
        for ds_idx, ds_info in enumerate(indexed_dataset_infos):
            print(" > merging dbs; '%s', dataset %d / %d ... '%s'." %
                  (db_type, ds_idx, len(indexed_dataset_infos), ds_info["name"]))
            individual_chunk_db = get_individual_chunk_db(ds_idx, ds_info)
            individual_doc_offsets = None if n_docs_key is None else \
                get_individual_doc_offsets(ds_idx, ds_info)

            if db_type == "valid":
                individual_chunk_db = \
                    individual_chunk_db[ds_info["n_chunks_train"]:]
                if n_docs_key is None:
                    individual_doc_offsets = None
                else:
                    train_doc_offset = \
                        individual_doc_offsets[ds_info["n_docs_train"] - 1, 2]
                    individual_doc_offsets = \
                        np.copy(individual_doc_offsets[ds_info["n_docs_train"]:])
                    individual_doc_offsets[:, 2] -= train_doc_offset

                    print("~~~")
                    print(individual_doc_offsets)
                    print(train_doc_offset)
                    raise Exception("test me.")
            else:
                individual_chunk_db = \
                    individual_chunk_db[:ds_info[n_chunks_key]]
                individual_doc_offsets = None if n_docs_key is None else \
                    np.copy(individual_doc_offsets[:ds_info[n_docs_key]])

            merged_chunk_db[chunk_start_index:chunk_start_index+len(individual_chunk_db)] = individual_chunk_db
            chunk_start_index += len(individual_chunk_db)
            n_written[0] = chunk_start_index
            if n_docs_key is not None:
                individual_doc_offsets[:, 2] += doc_start_offset
                doc_end_index = doc_start_index + individual_doc_offsets.shape[0]
                merged_doc_offsets[doc_start_index:doc_end_index] = \
                    individual_doc_offsets
                doc_start_index = doc_end_index
                doc_start_offset = individual_doc_offsets[-1, 2].item()

        f.close()


def build_db():
    '''Extract token chunks from each indexed dataset.

    Iterate each document of each indexed dataset, extract that document's
    chunks, and save to a 'DB' (hdf5 file).
    '''

    # Indexed dataset info.
    indexed_dataset_infos = init_indexed_dataset_infos()

    # Build dbs.
    build_individual_dbs(indexed_dataset_infos)

    # Single-process going forward.
    if torch.distributed.get_rank() != 0:
        return

    # Update n_chunks & save indexed dataset infos.
    if not os.path.exists(get_indexed_dataset_infos_path()):
        update_chunk_counts(indexed_dataset_infos)
        save_indexed_dataset_infos(indexed_dataset_infos)
    indexed_dataset_infos = get_indexed_dataset_infos()

    # Merge dbs.
    merge_dbs(indexed_dataset_infos, "sampled")
    merge_dbs(indexed_dataset_infos, "train")
    merge_dbs(indexed_dataset_infos, "valid")