File size: 17,334 Bytes
b92a520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
from collections import defaultdict
from concurrent.futures import as_completed, ProcessPoolExecutor
from functools import reduce
import glob
import json
import numpy as np
import os
from pathlib import Path
import threading
import torch
from tqdm import tqdm
import types
from megatron import get_retro_args, print_rank_0
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
from megatron.tokenizer.tokenizer import (
_BertWordPieceTokenizer,
_GPT2BPETokenizer,
)
from tools.bert_embedding.utils import get_missing_blocks_by_rank
from tools.retro.external_libs import h5py
from tools.retro.utils import get_gpt_tokenizer, get_bert_tokenizer
from .utils import (
get_indexed_dataset_infos,
get_indexed_dataset_infos_path,
get_individual_db_dir,
get_individual_chunk_db,
get_individual_doc_offsets,
get_merged_dataset,
get_merged_db_path_map,
save_indexed_dataset_infos,
)
def init_indexed_dataset_infos():
'''Gather meta-info about each indexed dataset.
The returned info array allows for easy access to the configuration, and
helps remove ambiguity.
'''
args = get_retro_args()
assert len(args.data_path) % 2 == 0, \
"currently, only blendable dataset is supported."
# Dataset infos.
infos = []
for i in range(0, len(args.data_path), 2):
ratio = float(args.data_path[i])
prefix = args.data_path[i + 1]
path = prefix + ".bin"
name = os.path.basename(prefix)
assert os.path.exists(path), "couldn't find '%s'." % path
infos.append({
"ratio" : ratio,
"prefix" : prefix,
"path" : path,
"name" : name,
"db_dir" : get_individual_db_dir(name),
"dataset" : make_indexed_dataset(prefix, "mmap", True),
})
return infos
def build_partial_db(
dataset_idx,
n_datasets,
indexed_dataset,
block_id,
n_blocks,
block,
proc_id,
n_procs,
tokenizers,
):
'''Process a document index range of the indexed dataset.
The chunk database is built in parallel blocks, since de-tokenizing &
re-tokenizing for Bert-length computation is expensive. This method
iterates each document and extracts sequential 'chunk-length' sequences
from each document.
'''
args = get_retro_args()
# Document start/end indexes.
doc_range = block["range"]
n_docs = doc_range[1] - doc_range[0]
n_docs_per_proc = int(np.ceil(n_docs / n_procs))
doc_start_id = doc_range[0] + proc_id * n_docs_per_proc
doc_end_id = min(doc_range[1], doc_start_id + n_docs_per_proc)
# Print progress.
progress_proc_ids = set(range(n_procs)) \
if torch.distributed.get_rank() == 0 else set()
if proc_id in progress_proc_ids:
print(" > building partial chunk db, proc %d / %d, docs %d:%d / %d."%(
proc_id,
n_procs,
doc_start_id,
doc_end_id,
n_docs,
))
# Progress bars (snapshot of overall progress).
doc_id_iter = range(doc_start_id, doc_end_id)
pbar = tqdm(doc_id_iter) \
if proc_id in progress_proc_ids else \
doc_id_iter
# Iterate documents & parse chunks.
chunk_db_valid = []
chunk_db_invalid = []
doc_size_map = {}
for doc_id in pbar:
# Progress description.
try:
pbar.set_description("ds %d / %d, block %d / %d, proc %d / %d." % (
dataset_idx,
n_datasets,
block_id,
n_blocks,
proc_id,
n_procs))
except:
pass
# Remove EOD token.
doc = indexed_dataset.get(doc_id)
if doc[-1].item() == tokenizers.gpt.eod:
doc = doc[:-1]
doc_len = len(doc)
# Chunk start/end indexes.
chunk_start_idxs = list(range(0, doc_len, args.retro_gpt_chunk_length))
chunk_end_idxs = [min(doc_len, s + args.retro_gpt_chunk_length)
for s in chunk_start_idxs]
# Re-tokenize each chunk to Bert/Wordpiece (empty bert -> 'invalid').
doc_size_map[doc_id] = 0
for i, chunk_start_idx in enumerate(chunk_start_idxs):
# Re-tokenize.
chunk_end_idx = chunk_end_idxs[i]
gpt_token_ids = indexed_dataset.get(
idx=doc_id,
offset=chunk_start_idx,
length=chunk_end_idx - chunk_start_idx,
)
text = tokenizers.gpt.detokenize(gpt_token_ids.tolist())
bert_token_ids = tokenizers.bert.tokenize(text)
# 'Valid' for non-empty Bert chunks; 'invalid' otherwise.
if len(bert_token_ids) == 0:
_chunk_db = chunk_db_invalid
else:
_chunk_db = chunk_db_valid
doc_size_map[doc_id] += 1
_chunk_db.append((
doc_id,
chunk_start_idx,
chunk_end_idx,
len(bert_token_ids),
))
return proc_id, chunk_db_valid, chunk_db_invalid, doc_size_map
def build_individual_db(dataset_idx, n_datasets, dataset_info, tokenizers):
'''Process a single indexed dataset & extract chunks.'''
args = get_retro_args()
# Make directory.
db_dir = dataset_info["db_dir"]
os.makedirs(db_dir, exist_ok=True)
# Indexed dataset.
indexed_dataset = dataset_info["dataset"]
# Missing db blocks.
n_missing_world, missing_db_blocks = get_missing_blocks_by_rank(
db_dir,
len(indexed_dataset),
args.retro_doc_block_size,
validate=lambda f : f["chunks_valid"].shape == (0,) \
or f["chunks_valid"].shape[1] == 4)
# Prevent missing-path-write race condition.
torch.distributed.barrier()
if not missing_db_blocks:
return
# Num processes.
if n_missing_world == 1:
n_procs = 128
elif n_missing_world <= 2:
n_procs = 64
elif n_missing_world <= 4:
n_procs = 32
elif n_missing_world <= 8:
n_procs = 16
else:
n_procs = 8
# Process documents in parallel.
with ProcessPoolExecutor(max_workers=n_procs) as executor:
for block_idx, block in enumerate(missing_db_blocks):
if block is not None:
db_path = block["path"]
# Build partial dbs.
print_rank_0(' > build partial dbs.')
futures = []
for proc_id in range(n_procs): # not true process id
futures.append(executor.submit(
build_partial_db,
dataset_idx,
n_datasets,
indexed_dataset,
block_idx,
len(missing_db_blocks),
block,
proc_id,
n_procs,
tokenizers,
))
partial_chunk_dbs = []
for future in as_completed(futures):
partial_chunk_dbs.append(future.result())
# Concatenate chunks.
partial_chunk_dbs.sort(key=lambda item:item[0]) # sort by proc_id
chunk_db_valid = [item
for partial_chunk_db in partial_chunk_dbs
for item in partial_chunk_db[1]]
chunk_db_invalid = [item
for partial_chunk_db in partial_chunk_dbs
for item in partial_chunk_db[2]]
# Convert to numpy.
print_rank_0(' > converting chunk db to numpy.')
chunk_db_valid = np.array(chunk_db_valid, dtype="uint32")
chunk_db_invalid = np.array(chunk_db_invalid, dtype="uint32")
# Document offsets.
doc_sizes = [(d, s)
for partial_chunk_db in partial_chunk_dbs
for d, s in partial_chunk_db[3].items()]
doc_sizes.sort(key = lambda item : item[0])
doc_offsets = np.cumsum([item[1] for item in doc_sizes]) \
.astype("uint64")
doc_offsets = np.stack((
np.array([item[0] for item in doc_sizes], dtype="uint64"),
doc_offsets), axis=1)
# Save DB.
print_rank_0(" > saving individual db.")
with h5py.File(db_path, "w") as f:
dset = f.create_dataset("chunks_valid", data=chunk_db_valid)
dset = f.create_dataset("chunks_invalid",
data=chunk_db_invalid)
dset = f.create_dataset("doc_offsets", data=doc_offsets)
# Wait for all ranks to finish block.
print_rank_0(" > waiting for all ranks to finish block.")
torch.distributed.barrier()
print_rank_0(" > finished saving individual db.")
def build_individual_dbs(indexed_dataset_infos):
'''Iterate each indexed dataset & process its chunks.'''
args = get_retro_args()
# Tokenizers.
tokenizers = types.SimpleNamespace(
gpt=get_gpt_tokenizer(),
bert=get_bert_tokenizer(),
)
# Build individual DBs.
print_rank_0(" > build individual chunk dbs.")
for ds_idx, ds_info in enumerate(indexed_dataset_infos):
# Progress.
print_rank_0(" > building individual db, dataset %d / %d ... '%s'." % (
ds_idx,
len(indexed_dataset_infos),
ds_info["name"],
))
# Process single dataset.
build_individual_db(ds_idx, len(indexed_dataset_infos),
ds_info, tokenizers)
def update_chunk_counts(indexed_dataset_infos):
'''Set n_chunks_train & n_chunks sampled for each individual DB.'''
args = get_retro_args()
if torch.distributed.get_rank() != 0:
return
# Data ratio sum (for setting index training chunks).
data_ratio_sum = sum([ d["ratio"] for d in indexed_dataset_infos ])
# Training split size (split at document level).
train_fraction = float(args.split.split(",")[0]) / 100
assert train_fraction > 0 and train_fraction <= 1
# Set n_chunks (including n_chunks_sampled for unambiguity).
print_rank_0(" > compute n_chunks.")
for ds_index, ds_info in enumerate(indexed_dataset_infos):
db_dir = ds_info["db_dir"]
db_paths = sorted(glob.glob(db_dir + "/*.hdf5"))
# Update counts.
ds_info["n_docs"] = len(ds_info["dataset"].doc_idx) - 1
ds_info["n_docs_train"] = int(train_fraction * ds_info["n_docs"])
ds_info["n_chunks"] = 0 # previously, 'n_chunks_valid'
ds_info["n_chunks_train"] = 0
ds_info["n_chunks_invalid"] = 0
for db_path in tqdm(db_paths, "%d/%d, %s" % (
ds_index, len(indexed_dataset_infos), ds_info["name"])):
with h5py.File(db_path, "r") as f:
ds_info["n_chunks"] += len(f["chunks_valid"])
ds_info["n_chunks_invalid"] += len(f["chunks_invalid"])
ds_info["n_chunks_train"] += \
(np.copy(f["chunks_valid"][:, 0]) < ds_info["n_docs_train"]) \
.sum().item()
ds_info["n_chunks_sampled"] = int(args.retro_index_ntrain *
ds_info["ratio"] / data_ratio_sum)
# Verify counts.
assert ds_info["n_chunks_train"] <= ds_info["n_chunks"], \
"n_train (%d) > n_total (%d)." % (
ds_info["n_chunks_train"], ds_info["n_chunks"])
assert ds_info["n_chunks_sampled"] <= ds_info["n_chunks_train"], \
"n_sampled (%d) > n_train (%d)." % (
ds_info["n_chunks_sampled"], ds_info["n_chunks_train"])
def merge_dbs(indexed_dataset_infos, db_type):
'''Merge individual DBs into single DB.'''
if torch.distributed.get_rank() != 0:
return
print(" > build %s chunk db." % db_type)
# Count chunks.
if db_type == "sampled":
n_chunks_key = "n_chunks_sampled"
n_docs_key = None
elif db_type == "train":
n_chunks_key = "n_chunks_train"
n_docs_key = "n_docs_train"
elif db_type == "valid":
n_docs_key = None
else:
raise Exception("handle db_type '%s'." % db_type)
if db_type == "valid":
n_chunks = sum(m["n_chunks"] - m["n_chunks_train"]
for m in indexed_dataset_infos)
else:
n_chunks = sum(m[n_chunks_key] for m in indexed_dataset_infos)
n_docs = None if n_docs_key is None else \
sum(m[n_docs_key] for m in indexed_dataset_infos)
# DB path.
db_path = get_merged_db_path_map()[db_type]
# Delete existing chunk db if incorrect size.
if os.path.exists(db_path):
try:
f = h5py.File(db_path)
n_alloc = len(f["chunks"]) # total allocated
n_written = f["n_written"][0].item() # total written
f.close()
if n_chunks != n_alloc or n_chunks != n_written:
os.remove(db_path)
except Exception as e:
if isinstance(e, OSError):
os.remove(db_path)
elif isinstance(e, KeyError):
f.close()
os.remove(db_path)
else:
raise e
# Build merged chunk db.
if not os.path.exists(db_path):
os.makedirs(os.path.dirname(db_path), exist_ok=True)
f = h5py.File(db_path, "w")
# Initialize output arrays.
merged_chunk_db = \
f.create_dataset("chunks", (n_chunks, 5), dtype="uint32")
merged_doc_offsets = None if n_docs_key is None else \
f.create_dataset("doc_offsets", (n_docs, 3), dtype="uint64")
n_written = f.create_dataset("n_written", (1,), dtype="uint64")
n_written[0] = 0
# Iterate indexed datasets & collect chunks.
chunk_start_index = 0
doc_start_index = 0
doc_start_offset = 0
for ds_idx, ds_info in enumerate(indexed_dataset_infos):
print(" > merging dbs; '%s', dataset %d / %d ... '%s'." %
(db_type, ds_idx, len(indexed_dataset_infos), ds_info["name"]))
individual_chunk_db = get_individual_chunk_db(ds_idx, ds_info)
individual_doc_offsets = None if n_docs_key is None else \
get_individual_doc_offsets(ds_idx, ds_info)
if db_type == "valid":
individual_chunk_db = \
individual_chunk_db[ds_info["n_chunks_train"]:]
if n_docs_key is None:
individual_doc_offsets = None
else:
train_doc_offset = \
individual_doc_offsets[ds_info["n_docs_train"] - 1, 2]
individual_doc_offsets = \
np.copy(individual_doc_offsets[ds_info["n_docs_train"]:])
individual_doc_offsets[:, 2] -= train_doc_offset
print("~~~")
print(individual_doc_offsets)
print(train_doc_offset)
raise Exception("test me.")
else:
individual_chunk_db = \
individual_chunk_db[:ds_info[n_chunks_key]]
individual_doc_offsets = None if n_docs_key is None else \
np.copy(individual_doc_offsets[:ds_info[n_docs_key]])
merged_chunk_db[chunk_start_index:chunk_start_index+len(individual_chunk_db)] = individual_chunk_db
chunk_start_index += len(individual_chunk_db)
n_written[0] = chunk_start_index
if n_docs_key is not None:
individual_doc_offsets[:, 2] += doc_start_offset
doc_end_index = doc_start_index + individual_doc_offsets.shape[0]
merged_doc_offsets[doc_start_index:doc_end_index] = \
individual_doc_offsets
doc_start_index = doc_end_index
doc_start_offset = individual_doc_offsets[-1, 2].item()
f.close()
def build_db():
'''Extract token chunks from each indexed dataset.
Iterate each document of each indexed dataset, extract that document's
chunks, and save to a 'DB' (hdf5 file).
'''
# Indexed dataset info.
indexed_dataset_infos = init_indexed_dataset_infos()
# Build dbs.
build_individual_dbs(indexed_dataset_infos)
# Single-process going forward.
if torch.distributed.get_rank() != 0:
return
# Update n_chunks & save indexed dataset infos.
if not os.path.exists(get_indexed_dataset_infos_path()):
update_chunk_counts(indexed_dataset_infos)
save_indexed_dataset_infos(indexed_dataset_infos)
indexed_dataset_infos = get_indexed_dataset_infos()
# Merge dbs.
merge_dbs(indexed_dataset_infos, "sampled")
merge_dbs(indexed_dataset_infos, "train")
merge_dbs(indexed_dataset_infos, "valid")
|