File size: 4,273 Bytes
b92a520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.

from collections import defaultdict
import glob
import json
import numpy as np
import os
from tqdm import tqdm

from megatron import get_retro_args, print_rank_0
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
from tools.retro.external_libs import h5py

from .dataset import DBDataset


def get_base_db_workdir():
    '''Sub-directory for DB data.'''
    args = get_retro_args()
    return os.path.join(args.retro_workdir, "db")


def get_indexed_dataset_infos_path():
    '''Path to indexed dataset meta-infos.'''
    return os.path.join(get_base_db_workdir(), "indexed_dataset_infos.json")


def save_indexed_dataset_infos(indexed_dataset_infos):
    '''Save dataset order & meta-info.'''

    # Remove 'dataset' field.
    clean_infos = []
    for info in indexed_dataset_infos:
        info = dict(info)
        del info["dataset"]
        clean_infos.append(info)

    # Save.
    with open(get_indexed_dataset_infos_path(), "w") as f:
        json.dump(clean_infos, f, indent=4)


def get_indexed_dataset_infos():
    '''Load indexed dataset meta-infos.'''

    # Load json.
    path = get_indexed_dataset_infos_path()
    with open(path) as f:
        infos = json.load(f)

    # Add indexed datasets.
    for info in infos:
        info["dataset"] = make_indexed_dataset(info["prefix"], "mmap", True)

    return infos


def get_individual_db_dir(name):
    '''Individual DB's directory.'''
    return os.path.join(get_base_db_workdir(), "individual", name)


def get_individual_chunk_db(ds_id, ds_info):
    '''Load individual dataset's chunk DB.'''
    db_paths = sorted(glob.glob(ds_info["db_dir"] + "/*hdf5"))
    # *Note*: convert to dataset, rather than copying to memory.
    db = np.zeros((ds_info["n_chunks"], 5), dtype="uint32")
    db[:, 0] = ds_id
    start_idx = 0
    for db_path in db_paths:
        f = h5py.File(db_path, "r")
        n_chunks_current = f["chunks_valid"].shape[0]
        db[start_idx:(start_idx+n_chunks_current), 1:] = f["chunks_valid"]
        start_idx += n_chunks_current
        f.close()

    assert start_idx == ds_info["n_chunks"]

    return db


def get_individual_doc_offsets(ds_id, ds_info):
    '''Load individual dataset's chunk DB.'''
    paths = sorted(glob.glob(ds_info["db_dir"] + "/*hdf5"))
    # *Note*: convert to dataset, rather than copying to memory.
    doc_offsets = np.zeros((ds_info["n_docs"], 3), dtype="uint64")
    doc_offsets[:, 0] = ds_id
    start_idx = 0
    start_offset = 0
    for path in paths:
        with h5py.File(path) as f:
            current_doc_offsets = np.copy(f["doc_offsets"])
            current_doc_offsets[:, 1] += start_offset
            current_ndocs = current_doc_offsets.shape[0]
            doc_offsets[start_idx:(start_idx+current_ndocs), 1:] = \
                current_doc_offsets
            start_idx += current_ndocs
            start_offset = current_doc_offsets[-1, 1].item()

    return doc_offsets


def get_merged_db_path_map():
    '''Paths to merged datasets.'''
    base_dir = get_base_db_workdir()
    return {
        "sampled" : os.path.join(base_dir, "merged", "sampled.hdf5"),
        "train" : os.path.join(base_dir, "merged", "train.hdf5"),
        "valid" : os.path.join(base_dir, "merged", "valid.hdf5"),
    }


def get_merged_dataset(db_type, indexed_dataset_infos=None):
    '''Get merged dataset.'''

    args = get_retro_args()

    if not indexed_dataset_infos:
        indexed_dataset_infos = get_indexed_dataset_infos()

    # Load chunks.
    db_path = get_merged_db_path_map()[db_type]
    f = h5py.File(db_path, "r")
    chunks = f["chunks"]

    # DB dataset.
    indexed_datasets = [ info["dataset"] for info in indexed_dataset_infos ]
    dataset = DBDataset(db_path, indexed_datasets, chunks,
                        args.retro_gpt_chunk_length)

    return dataset


def get_merged_sampled_dataset(indexed_dataset_infos=None):
    return get_merged_dataset("sampled", indexed_dataset_infos)


def get_merged_train_dataset(indexed_dataset_infos=None):
    return get_merged_dataset("train", indexed_dataset_infos)


def get_merged_valid_dataset(indexed_dataset_infos=None):
    return get_merged_dataset("valid", indexed_dataset_infos)