File size: 8,827 Bytes
b92a520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.

import numpy as np
import os
import psutil
import time
import torch
from tqdm import tqdm

from megatron import get_retro_args, print_rank_0
from tools.bert_embedding import BertEmbedder
from tools.bert_embedding.utils import get_missing_blocks_by_rank
from tools.retro.db.utils import \
    get_merged_train_dataset as get_db_merged_train_dataset
from tools.retro.external_libs import faiss, h5py
from tools.retro.index.factory import IndexFactory
from tools.retro.index.utils import get_index_dir
from tools.retro.utils import GPTToTextDataset

from .chunk_dataset import get_chunk_dataset_map as get_query_dataset_map


def get_index(ondisk=False):
    '''Read index from disk.'''

    args = get_retro_args()

    # Load index.
    index_wrapper = IndexFactory.get_index(args.retro_index_type)
    index_dir = get_index_dir()
    added_index_path = index_wrapper.get_added_index_path()
    if ondisk:
        index = faiss.read_index(added_index_path, faiss.IO_FLAG_MMAP)
    else:
        index = faiss.read_index(added_index_path)

    # Search parameters.
    faiss.ParameterSpace().set_index_parameter(index, "efSearch",
                                               args.retro_query_ef_search)
    faiss.ParameterSpace().set_index_parameter(index, "nprobe",
                                               args.retro_query_nprobe)

    return index


def embed_block(gpt_dataset, block, embedder):
    '''Embed block of chunks.'''
    text_block_dataset = torch.utils.data.Subset(
        GPTToTextDataset(gpt_dataset),
        range(*block["range"]),
    )
    return embedder.embed_text_dataset(text_block_dataset)


def query_embeddings(db_dataset, index,
                     embeddings, chunk_id_range,
                     sample_map, n_chunks_per_sample,
                     verbose=True):
    '''Query neighbors of a block of embeddings.'''

    args = get_retro_args()

    # Query neighbor ids.
    if verbose: print_rank_0("search.")
    t = time.time()
    assert index.ntotal > 0, "check we don't accidentally have an empty index."
    _, query_neighbor_ids = \
        index.search(embeddings, args.retro_query_num_neighbors_query)
    if verbose: print_rank_0("  time : %.3f sec." % (time.time() - t))

    # Filter banned neighbor ids.
    if verbose: print_rank_0("filter banned neighbor ids.")
    filtered_neighbor_ids = np.full(
        shape=(len(query_neighbor_ids), args.retro_query_num_neighbors_save),
        fill_value=-1,
        dtype="int64",
    )
    min_chunk_id, max_chunk_id = chunk_id_range
    for chunk_id in range(min_chunk_id, max_chunk_id):

        sample_id = chunk_id // n_chunks_per_sample
        sample = sample_map[sample_id]
        sample_dataset_idx = sample["dataset_idx"].item()
        sample_doc_ids = sample["doc_ids"].tolist()
        sample_doc_tuples = [(sample_dataset_idx, d) for d in sample_doc_ids]
        
        # Get valid neighbors (!= -1).
        query_row = [ i for i in query_neighbor_ids[chunk_id-min_chunk_id]
                      if i >= 0 ]

        # Filter row.
        filtered_row = [ i for i in query_row
                         if tuple(db_dataset.doc_tuples[i].tolist())
                         not in sample_doc_tuples ]
        filtered_row = filtered_row[:args.retro_query_num_neighbors_save]
        filtered_row += \
            [-1] * (args.retro_query_num_neighbors_save - len(filtered_row))
        filtered_neighbor_ids[chunk_id-min_chunk_id] = filtered_row

    return query_neighbor_ids, filtered_neighbor_ids


def query_embedding_block(db_dataset, index,
                          embeddings, chunk_id_range,
                          sample_map, n_chunks_per_sample):

    query_neighbor_ids = []
    filtered_neighbor_ids = []

    # Query in sub-blocks.
    partial_block_size = 1000
    for partial_start_idx in tqdm(
            range(0, len(embeddings), partial_block_size),
            "search",
    ):
        partial_end_idx = min(len(embeddings),
                              partial_start_idx + partial_block_size)
        partial_embeddings = embeddings[partial_start_idx:partial_end_idx]
        partial_chunk_id_range = (
            chunk_id_range[0] + partial_start_idx,
            chunk_id_range[0] + partial_end_idx,
        )
        partial_query_neighbor_ids, partial_filtered_neighbor_ids = \
            query_embeddings(db_dataset, index,
                             partial_embeddings, partial_chunk_id_range,
                             sample_map, n_chunks_per_sample,
                             verbose=False)
        query_neighbor_ids.append(partial_query_neighbor_ids)
        filtered_neighbor_ids.append(partial_filtered_neighbor_ids)

    # Concatenate.
    query_neighbor_ids = np.concatenate(query_neighbor_ids, axis=0)
    filtered_neighbor_ids = np.concatenate(filtered_neighbor_ids, axis=0)

    return query_neighbor_ids, filtered_neighbor_ids


def query_block_neighbors(db_dataset, query_dataset,
                          index, embedder,
                          block):
    '''Query neighbors of a dataset block (i.e., range).'''

    args = get_retro_args()
    n_chunks_per_sample = query_dataset.n_chunks_per_sample

    # Sample map.
    sample_ids = sorted(list(set(chunk_id // n_chunks_per_sample
                                 for chunk_id in range(*block["range"]))))
    sample_map = {}
    for i in sample_ids:
        sample = query_dataset.sample_dataset[i]
        sample_map[i] = {
            "dataset_idx" : sample["dataset_idx"],
            "doc_ids" : sample["doc_ids"],
        }

    # Embed block.
    embeddings = embed_block(query_dataset, block, embedder)

    # Query embeddings.
    _, filtered_neighbor_ids = query_embedding_block(
        db_dataset, index,
        embeddings, block["range"],
        sample_map, n_chunks_per_sample)

    # Save neighbors.
    print_rank_0("save neighbors.")
    os.makedirs(os.path.dirname(block["path"]), exist_ok=True)
    f = h5py.File(block["path"], "w")
    f.create_dataset("neighbors", data=filtered_neighbor_ids)
    f.close()


def query_dataset_neighbors(db_dataset, query_dataset,
                            prefix, neighbor_dir,
                            index, embedder):
    '''Query neighbors of each chunk within a dataset.'''

    args = get_retro_args()

    def validate(f):
        assert f["neighbors"].shape[1] == args.retro_query_num_neighbors_save, \
            "neighbors.shape == %s; num_neighbors_target == %d." % (
                str(f["neighbors"].shape),
                args.retro_num_neighbors_target,
            )
    n_missing_blocks, missing_neighbor_blocks = get_missing_blocks_by_rank(
        neighbor_dir,
        len(query_dataset),
        args.retro_block_size,
        validate=validate,
    )

    # Query each block.
    for block_index, block in enumerate(missing_neighbor_blocks):

        if block is not None:

            # Progress.
            print_rank_0("query '%s' block %d / %d ... %s ... mem %.3f gb, %.1f%%." % (
                prefix,
                block_index,
                len(missing_neighbor_blocks),
                os.path.basename(block["path"]),
                psutil.virtual_memory()[3] / 1024**3,
                psutil.virtual_memory()[2],
            ))

            # Query block neighbors.
            query_block_neighbors(db_dataset, query_dataset,
                                  index, embedder,
                                  block)

        # Synchronize progress across all ranks. (for easier observation)
        print_rank_0(" > waiting for other ranks to finish block.")
        torch.distributed.barrier()


def query_pretraining_neighbors():
    '''Query pretraining datasets (train & valid).'''

    args = get_retro_args()

    # Num threads.
    faiss.omp_set_num_threads(64)

    # Load chunk db dataset.
    print_rank_0("load chunk db dataset.")
    db_dataset = get_db_merged_train_dataset()
    db_dataset.load_doc_tuples()

    # Load index.
    print_rank_0(" > get index.")
    index = get_index()

    # Load datasets.
    print_rank_0(" > get dataset map.")
    query_dataset_map = get_query_dataset_map()

    # Bert embedder.
    embedder = BertEmbedder(args.retro_bert_batch_size,
                            args.retro_bert_max_chunk_length,
                            args.bert_embedder_type)

    # Query each (i.e., train, valid, test) dataset.
    print_rank_0(" > query.")
    for prefix, info in query_dataset_map.items():
        print_rank_0(" > query '%s' dataset ... %d samples." %
                     (prefix, len(info["data"])))
        query_dataset_neighbors(db_dataset, info["data"],
                                prefix, info["neighbor_dir"],
                                index, embedder)