File size: 8,184 Bytes
c9ae6ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Habana MLPerf™ inference submission
This directory provides instructions to reproduce Habana's results for MLPerf™ inference submission.\
MLPerf™ is a trademark and service mark of MLCommons Association in the United States and other countries.\
All rights reserved. Unauthorized use is strictly prohibited.
- [Habana MLPerf™ inference submission](#habana-mlperf-inference-submission)
- [Setup](#setup)
- [Prepare MLPerf Directory](#prepare-mlperf-directory)
- [Build and Deploy HabanaLabs Container](#build-and-deploy-habanalabs-container)
- [Download Checkpoint](#download-checkpoint)
- [Download Dataset](#download-dataset)
- [Reproduce Results](#reproduce-results)
- [99 and 99.9 Accuracy](#99-and-999-accuracy)
- [Get Started](#get-started)
- [Generate Results](#generate-results)
- [Performance Optimization with FP8 Flow](#performance-optimization-with-fp8-flow)
- [Environment Variables](#environment-variables)
- [Supported Configurations](#supported-configurations)
- [Changelog](#changelog)
## Setup
Please follow the instructions provided in the [Gaudi Installation Guide](https://docs.habana.ai/en/latest/Installation_Guide/index.html) to set up the environment.
### Prepare MLPerf Directory
Perform the following:
1. Follow the instructions provided in the [Gaudi Installation
Guide](https://docs.habana.ai/en/latest/Installation_Guide/index.html) to set up the
environment including the `$PYTHON` environment variable.
The guide will walk you through the process of setting up your system to run the benchmarks on Gaudi.
2. Clone Model-References repository and switch to the branch that matches your SynapseAI version. You can run the
[`hl-smi`](https://docs.habana.ai/en/latest/Management_and_Monitoring/System_Management_Tools_Guide/System_Management_Tools.html#hl-smi-utility-options)
utility to determine the SynapseAI version.
```bash
export MLPERF_ROOT=/path/to/mlperf/root
cd $MLPERF_ROOT
git clone -b [SynapseAI version] https://github.com/HabanaAI/Model-References
export MLPERF_DIR=$MLPERF_ROOT/Model-References/MLPERF3.1/Inference
```
### Build and Deploy HabanaLabs Container
To build MLPerf inference 3.1 container, perform the following:
1. Set the environment variables for the docker command.
* To find a docker image, go to [gaudi-docker](https://vault.habana.ai/ui/repos/tree/General/gaudi-docker).
* Open gaudi-docker directory, and select the folder that matches the SynapseAI version (determined by running [`hl-smi`](https://docs.habana.ai/en/latest/System_Management_Tools_Guide/System_Management_Tools.html#hl-smi-utility-options)).
* Navigate to subdirectories, choose system and framework version.
* Choose the docker build version. Most often 'latest' will be used.
* Navigate to "Docker Info" tab and note "Title" string.
* Set `DOCKER_IMAGE` to "Title" string with `vault.habana.ai/gaudi-docker/` prefix. See the examples below.
* Example on PyTorch Container:
```bash
# NOTE: The below is only an example value. Replace [SynapseAI version] and [PT version] to match your setup and Supported Configuration.
export DOCKER_IMAGE=vault.habana.ai/gaudi-docker/[SynapseAI version]/ubuntu20.04/habanalabs/pytorch-installer-[PT Version]:latest
```
2. Create `mlperf-habana container` by running the following command.
```bash
docker run --privileged --security-opt seccomp=unconfined \
--name mlperf-habana -td \
-v /dev:/dev \
--device=/dev:/dev \
-v /sys/kernel/debug:/sys/kernel/debug \
-v /tmp:/tmp \
-v $MLPERF_DIR:/root/Habana/ \
--cap-add=sys_nice --cap-add=SYS_PTRACE \
--user root --workdir=/root --net=host \
--ulimit memlock=-1:-1 ${DOCKER_IMAGE}
```
3. Start the docker.
```bash
docker exec -it mlperf-habana bash
```
### Download Checkpoint
```bash
mkdir -p /mnt/weka/data/pytorch/
pushd /mnt/weka/data/pytorch/
wget https://cloud.mlcommons.org/index.php/s/QAZ2oM94MkFtbQx/download --output-document checkpoint.zip
unzip -q checkpoint.zip && rm checkpoint.zip
popd
```
### Download Dataset
```bash
pushd /root/Habana/code/gptj-99.9/gpt-j
python download_cnndm.py
cp data/cnn_eval.json /mnt/weka/data/pytorch/gpt-j/cnn_eval.json
popd
```
## Reproduce Results
### 99 and 99.9 Accuracy
The same script was submitted for both 99 and 99.9 benchmarks - no additional improvements were made for low accuracy (99), and 99.9 results were used for 99 as well.
### Get Started
Install the requirements and build the latest loadgen.
```bash
cd /root/Habana/code
source functions.sh
build_mlperf_inference
```
### Generate Results
**To generate full submission results, run the following command:**
```bash
build_mlperf_inference --output-dir <path_to_output_dir> --submission gptj-99.9-fp8
```
The command produces results from accuracy and performance runs for both Offline and Server scenarios.
Logs can be found under /output_dir/logs/model/, e.g. /results/logs/gptj-99.9-fp8/
**To generate results for Offline and Server scenarios separately, run the following commands:**
```bash
build_mlperf_inference --output-dir <path_to_output_dir> --submission gptj-99.9-fp8_Offline
```
```bash
build_mlperf_inference --output-dir <path_to_output_dir> --submission gptj-99.9-fp8_Server
```
Logs can be found under /output_dir/logs/model/scenario/, e.g. /results/logs/gptj-99.9-fp8/Offline/
**To generate results for accuracy and performance separately, add ```--mode``` flag as in one of the following commands:**
```bash
build_mlperf_inference --output-dir <path_to_output_dir> --submission gptj-99.9-fp8_Server --mode acc
```
```bash
build_mlperf_inference --output-dir <path_to_output_dir> --submission gptj-99.9-fp8_Offline --mode perf
```
Logs can be found under /output_dir/logs/model/scenario/mode/, e.g. /results/logs/gptj-99.9-fp8/Offline/accuracy/
## Performance Optimization with FP8 Flow
To optimize performance, we set heavy-performance ops to operate in fp8-143.
All fp8 ops are working with a fixed fp8 exponent bias = 7 and no scaling is required.
### Environment Variables
The following outlines custom ENV variables used in the GPT-J submission script:
| Enviroment Variable | Effect |
|------------------------------------------------------------------------- |------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PT_USE_FP8_143=1 | Sets PT backend fp8 flavor to fp8_143 |
| UPDATE_MME_OUTPUT_PRECISION_FILTER="v_proj,matmul_av" | Allows the specified MME layer to output fp8 for performance optimization. |
| SCALES_FILE_PATH=quantization/measurements/per_tensor_scales_gpt_j.json | Loads per-tensor scales required for fp8 quantization. If not provided, no scaling is applied. |
| ENABLE_EXPERIMENTAL_FLAGS=true | Enables the above flags |
## Supported Configurations
| Validated on | SynapseAI Version | Framework Version(s) | Mode |
| :----------: | :---------------: | :------------------: | :------: |
| Gaudi2 | 1.14.0 | PyTorch 2.1.1 | Inference |
## Changelog
### 1.13.0
- Published MLPerf™ inference 3.1 GPT-J script |