File size: 34,078 Bytes
b92a520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
# Running Habana MLPerf™ Benchmarks
This directory provides instructions to reproduce Habana's results for [MLPerf Training v3.1](https://habana.ai/since-habanas-last-mlperf-submission/) **on 1 to 48 servers configurations with 8 Gaudi2 cards each.**
For more information on training deep learning models using Gaudi, refer to [developer.habana.ai](https://developer.habana.ai/resources/)
MLPerf™ is a trademark and service mark of MLCommons Association in the United States and other countries. All rights reserved. Unauthorized use is strictly prohibited.
- [Running Habana MLPerf™ Benchmarks](#running-habana-mlperf-benchmarks)
- [Setup](#setup)
- [Prepare MLPerf Directory](#prepare-mlperf-directory)
- [Build and Deploy HabanaLabs MLPerf Training 3.1 Container](#build-and-deploy-habanalabs-mlperf-training-31-container)
- [Training Data for TensorFlow BERT](#training-data-for-tensorflow-bert)
- [Training Data for PyTorch BERT](#training-data-for-pytorch-bert)
- [Training Data for ResNet50](#training-data-for-resnet50)
- [Training Data for GPT3-175B](#training-data-for-gpt3-175b)
- [Dataset Preparation for PyTorch Stable Diffusion](#dataset-preparation-for-pytorch-stable-diffusion)
- [Training BERT](#training-bert)
- [Training ResNet50](#training-resnet50)
- [Training GPT3-175B](#training-gpt3-175b)
- [Training PyTorch Stable Diffusion](#training-pytorch-stable-diffusion)
- [Supported Configurations](#supported-configurations)
- [Changelog](#changelog)
## Setup
### Prepare MLPerf Directory
On each compute node, perform the following:
1. Follow the instructions provided in the [Gaudi Installation
Guide](https://docs.habana.ai/en/latest/Installation_Guide/index.html) to set up the
environment including the `$PYTHON` environment variable.
The guide will walk you through the process of setting up your system to run the benchmarks on Gaudi.
2. Create directories for scratch and dataset folders:
```
export MLPERF_ROOT=/path/to/mlperf/root
export SCRATCH_DIR=$MLPERF_ROOT/scratch
export DATASETS_DIR=$MLPERF_ROOT/datasets
mkdir -p $SCRATCH_DIR
mkdir -p $DATASETS_DIR
```
**Note:** If training is to be conducted on multiple nodes, it is essential to place the $DATASETS_DIR on a shared filesystem that is accessible by all the nodes. This allows for dataset preparation to be performed only once in the `Training Data for <configuration>` sections, enabling all nodes to access the prepared dataset during training.
3. Clone Model-References repository and switch to the branch that matches your SynapseAI version. You can run the
[`hl-smi`](https://docs.habana.ai/en/latest/Management_and_Monitoring/System_Management_Tools_Guide/System_Management_Tools.html#hl-smi-utility-options)
utility to determine the SynapseAI version.
```bash
cd $MLPERF_ROOT
git clone -b [SynapseAI version] https://github.com/HabanaAI/Model-References
export MLPERF_DIR=$MLPERF_ROOT/Model-References/MLPERF3.1/Training
```
### Build and Deploy HabanaLabs MLPerf Training 3.1 Container
To build MLPerf training 3.1 container, perform the following:
1. Copy ssh keys to enable passwordless ssh to /root/.ssh/
2. Set the environment variables for the docker command.
* To find a docker image, go to [gaudi-docker](https://vault.habana.ai/ui/repos/tree/General/gaudi-docker).
* Open gaudi-docker directory, and select the folder that matches the SynapseAI version (determined by running [`hl-smi`](https://docs.habana.ai/en/latest/System_Management_Tools_Guide/System_Management_Tools.html#hl-smi-utility-options)).
* Navigate to subdirectories, choose system and framework version.
* Choose the docker build version. Most often 'latest' will be used.
* Navigate to "Docker Info" tab and note "Title" string.
* Set `DOCKER_IMAGE` to "Title" string with `vault.habana.ai/gaudi-docker/` prefix. See the examples below.
* Example on TensorFlow Container:
```bash
# NOTE: The below is only an example value. Replace [SynapseAI version] and [TF version] to match your setup and Supported Configuration.
export DOCKER_IMAGE=vault.habana.ai/gaudi-docker/[SynapseAI version]/ubuntu20.04/habanalabs/tensorflow-installer-tf-cpu-[TF version]:latest
export CONTAINER_NAME=mlperf3_1
```
* Example on PyTorch Container:
```bash
# NOTE: The below is only an example value. Replace [SynapseAI version] and [PT version] to match your setup and Supported Configuration.
export DOCKER_IMAGE=vault.habana.ai/gaudi-docker/[SynapseAI version]/ubuntu20.04/habanalabs/pytorch-installer-[PT Version]:latest
export CONTAINER_NAME=mlperf3_1
```
3. Create `mlperf3.1` container by running the following command.
```bash
docker run --privileged --security-opt seccomp=unconfined \
--name $CONTAINER_NAME -td \
-v /dev:/dev \
--device=/dev:/dev \
-e LOG_LEVEL_ALL=6 \
-v /sys/kernel/debug:/sys/kernel/debug \
-v /tmp:/tmp \
-v $MLPERF_DIR:/root/MLPERF \
-v $DATASETS_DIR:/root/datasets \
-v $SCRATCH_DIR:/root/scratch \
--cap-add=sys_nice --cap-add=SYS_PTRACE \
--user root --workdir=/root --net=host \
--ulimit memlock=-1:-1 ${DOCKER_IMAGE}
```
4. Start the docker.
```bash
docker exec $CONTAINER_NAME bash -c "service ssh start"
docker exec -it $CONTAINER_NAME bash
```
**Note:** The following two steps are only necessary for training on multiple nodes.
5. In the docker, create `/root/shared/hosts` file that contains a list of all host IPs in the cluster. Add one IP per line. Below is an example for 4 nodes (32 devices).
```
mkdir /root/shared
echo '10.10.100.101' > /root/shared/hosts
echo '10.10.100.102' >> /root/shared/hosts
echo '10.10.100.103' >> /root/shared/hosts
echo '10.10.100.104' >> /root/shared/hosts
```
6. SSH is used to spawn local and remote processes. In order to allow communication between machines it is required to provide a passwordless _ssh_ communication and set default port for connection. It has to be done on all of the machines:
```
mkdir .ssh
printf 'Host *\n StrictHostKeyChecking no\nPort 3022' >> .ssh/config
```
It also may be necessary to setup SSH keys and add them to `~/.ssh/authorized_keys`.
### Training Data for TensorFlow BERT
1. Log into mlperf3.1 TensorFlow container and install the requirements:
<!-- DATASET download_mlperf_bert_tensorflow -->
<!-- DATASET process_mlperf_bert_tensorflow -->
```bash
export BERT_PATH=/root/MLPERF/benchmarks/bert/implementations/TensorFlow/nlp/bert
cd $BERT_PATH
pip install -r requirements.txt
```
<!-- /DATASET process_mlperf_bert_tensorflow -->
<!-- /DATASET download_mlperf_bert_tensorflow -->
2. Download the required files from Google drives.
<!-- DATASET download_mlperf_bert_tensorflow -->
```bash
export TENSORFLOW_BERT_DATA=/root/datasets/tensorflow_bert
bash pretraining/prepare_dataset.sh \
--data-path $TENSORFLOW_BERT_DATA \
--only-download
```
<!-- /DATASET download_mlperf_bert_tensorflow -->
After completing this step, there should be a `$TENSORFLOW_BERT_DATA/input` folder containing the following files:
```
bert_config.json
model.ckpt-28252.data-00000-of-00001
model.ckpt-28252.index
model.ckpt-28252.meta
results_text.tar.gz
vocab.txt
```
3. Prepare the packed dataset by running the command below:
<!-- DATASET process_mlperf_bert_tensorflow -->
```bash
bash pretraining/prepare_dataset.sh \
--scripts-path $BERT_PATH \
--data-path $TENSORFLOW_BERT_DATA \
--only-preprocessing \
--jobs-limit 25
```
<!-- /DATASET process_mlperf_bert_tensorflow -->
This step will take multiple hours to complete.
The exact time depends on the machine setup and the speed of storage that contains the dataset.
The `--jobs-limit` option limits the number of pararell processes for converting and packing tfrecords.
This step is resource consuming,
and the machine running it must have a minimum of 32 CPUs and 755GB of RAM to ensure proper functioning.
4. `$TENSORFLOW_BERT_DATA` should now contain following folders:
```
checkpoint
eval_dataset
input
packed_data_500
unpacked_data
```
`input` folder can be removed if the preprocessing has been successfully completed.
By default, TensorFlow BERT uses only packed data for training,
as described in the scenario mentioned described [here](#training-for-tensorflow-bert).
In such cases, the `unpacked_data` is unnecessary and can be deleted.
### Training Data for PyTorch BERT
#### Dataset Preparation
Log into mlperf3.1 PyTorch container and run:
<!-- DATASET download_mlperf_bert_pytorch -->
<!-- DATASET process_mlperf_bert_pytorch -->
```bash
cd /root/MLPERF/benchmarks/bert/implementations/PyTorch
pip install -r requirements.txt
export PYTORCH_BERT_DATA=/root/datasets/pytorch_bert
```
<!-- /DATASET process_mlperf_bert_pytorch -->
```bash
bash input_preprocessing/prepare_data.sh -o $PYTORCH_BERT_DATA
```
<!-- /DATASET download_mlperf_bert_pytorch -->
At this stage, ```$PYTORCH_BERT_DATA/phase1``` checkpoint and ```$PYTORCH_BERT_DATA/hdf5/eval_varlength``` evaluation data are ready, while ```$PYTORCH_BERT_DATA/hdf5/training_4320/hdf5_4320_shards_uncompressed``` training data requires packing as described in the following section.
#### Training Data Packing
Once the training data is ready, pack it using a similar code as described in [GraphCore for v1.0 Submission](https://github.com/mlcommons/training_results_v1.0/tree/master/Graphcore/benchmarks/bert/implementations/popart/bert_data).
<!-- DATASET process_mlperf_bert_pytorch -->
```bash
mkdir $PYTORCH_BERT_DATA/packed
python3 pack_pretraining_data_pytorch.py \
--input_dir=$PYTORCH_BERT_DATA/hdf5/training-4320/hdf5_4320_shards_uncompressed \
--output_dir=$PYTORCH_BERT_DATA/packed \
--max_predictions_per_seq=76
```
<!-- /DATASET process_mlperf_bert_pytorch -->
For further details, refer to [Packing: Towards 2x NLP BERT Acceleration](https://arxiv.org/abs/2107.02027).
### Training Data for ResNet50
The instructions for the ImageNet dataset is applicable for both PyTorch and TensorFlow ResNet50.
1. Sign up with [image-net.org](http://image-net.org/download-images) and acquire the rights to download original images.
2. Follow the link to the 2012 ILSVRC and download ILSVRC2012_img_val.tar and ILSVRC2012_img_train.tar.
Place the files in the folder that will be mapped in mlperf3.1 container (for example, `$DATASETS_DIR`).
3. Run the script below in mlperf3.1 container (PyTorch or TensorFlow) to unpack the dataset:
```
bash /root/MLPERF/benchmarks/resnet/scripts/unpack_imagenet.sh \
--train-archive /path/to/ILSVRC2012_img_train.tar \
--validation-archive /path/to/ILSVRC2012_img_val.tar \
--output-path /root/datasets/imagenet \
--jobs-number 16
```
The script unpacks training and validation packages in parallel.
In addition, when upacking subarchives from ILSVRC2012_img_train.tar,
`--jobs-number` defines number of pararell processes allocated for the task.
Scripts runtime is dependent in large part on the data access speed of the storage where $DATASETS_DIR is located.
### Training Data for GPT3-175B
#### Dataset Preparation for GPT3-175B
Dataset preparation should be done in the following docker:
```
docker run --ipc=host -it -v $DATASETS_DIR:/root/datasets -v $MLPERF_DIR:/root/MLPERF nvcr.io/nvidia/pytorch:22.11-py3 bash
```
MLPerf GPT3 is trained using C4/en/3.0.1 dataset. It can be downloaded from https://huggingface.co/datasets/allenai/c4. Instruction is clear on how to select precisely the files for downloading.
```
apt-get update
apt-get install git-lfs
mkdir -p /root/datasets/gpt3
cd /root/datasets/gpt3
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/allenai/c4
cd c4
git lfs pull --include "en/*"
```
Out of all the files, only 256 will be required for training, and 8 for validation.
You can merge them into three .json.gz files using the following commands, which are taken from https://github.com/mlcommons/training/blob/master/large_language_model/megatron-lm/README.md.
```
# create softlinks to store each shard before merging
mkdir -p softlinks
for shard in {6..7}; do
start=$((shard * 128))
end=$((shard * 128 + 127))
mkdir -p softlinks/en_$shard
for ind in $(seq -f "%05g" $start $end); do
ln -s ../../en/c4-train.${ind}-of-01024.json.gz softlinks/en_${shard}/c4-train.${ind}-of-01024.json.gz
done
done
# merge
mkdir -p en_merge
for shard in {6..7}; do
cat softlinks/en_${shard}/*gz > en_merge/c4-train.en_${shard}.json.gz
done
cat en/c4-validation.0000* > en_merge/c4-validation.json.gz
```
To tokenize the prepared files, you need to download the tokenizer model, vocab_c4_en_301_5Mexp2_spm.model, and the vocabulary file, vocab_c4_en_301_5Mexp2_spm.vocab, from the following location:
https://console.cloud.google.com/storage/browser/mlperf-llm-public2;tab=objects?prefix=&forceOnObjectsSortingFiltering=false.
Please note that registration is required to access these files. Tokenization can be performed using the following commands.
Please be aware that this conversion process may take several hours.
```
git clone https://github.com/NVIDIA/NeMo.git
cd NeMo && git checkout f3ad584b94170bc3ea197df29eb9ef9c96061730 && bash ./reinstall.sh && cd ..
mkdir -p preprocessed_c4_spm
for shard in {6..7}; do
python3 NeMo/scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input en_merge/c4-train.en_${shard}.json.gz \
--tokenizer-library sentencepiece \
--tokenizer-model vocab_c4_en_301_5Mexp2_spm.model \
--output-prefix preprocessed_c4_spm/c4_en_${shard}_c4_spm \
--dataset-impl mmap \
--workers 128
done
python3 NeMo/scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input en_merge/c4-validation.json.gz \
--tokenizer-library sentencepiece \
--tokenizer-model vocab_c4_en_301_5Mexp2_spm.model \
--output-prefix preprocessed_c4_spm/c4_en_validation_c4_spm \
--dataset-impl mmap \
--workers 128
```
The resulting files to be used during training are as follows:
* ```preprocessed_c4_spm/c4_en_6_c4_spm_text_document.bin```
* ```preprocessed_c4_spm/c4_en_6_c4_spm_text_document.idx```
* ```preprocessed_c4_spm/c4_en_7_c4_spm_text_document.bin```
* ```preprocessed_c4_spm/c4_en_7_c4_spm_text_document.idx```
* ```preprocessed_c4_spm/c4_en_validation_c4_spm_text_document.bin```
* ```preprocessed_c4_spm/c4_en_validation_c4_spm_text_document.idx```
In addition to the dataset, GPT3 implementation requires https://huggingface.co/gpt2/resolve/main/vocab.json and https://huggingface.co/gpt2/resolve/main/merges.txt files:
```
wget "https://huggingface.co/gpt2/resolve/main/vocab.json" -P preprocessed_c4_spm
wget "https://huggingface.co/gpt2/resolve/main/merges.txt" -P preprocessed_c4_spm
```
In order to exclude graph compilation time from Time To Train, you need to prepare a synthetic dataset for device warmup:
```
python3 /root/MLPERF/benchmarks/gpt3/tools/create_synthetic_dataset.py \
--valid_files_path preprocessed_c4_spm/c4_en_validation_c4_spm_text_document \
--output_path preprocessed_c4_spm/
```
The commandline above will create synthetic files:
* ```preprocessed_c4_spm/synthetic_text_document.bin```
* ```preprocessed_c4_spm/synthetic_text_document.idx```
#### Checkpoint Preparation for GPT3-175B
Log into mlperf3.1 PyTorch container. Install DeepSpeed and other requirements:
```
pip install git+https://github.com/HabanaAI/DeepSpeed.git
pip install -r /root/MLPERF/benchmarks/gpt3/requirements.txt
```
The checkpoint for MLPerf GPT3 in the paxml format can be downloaded from
[gs://mlperf-llm-public2/gpt3_spmd1x64x24_tpuv4-3072_v84_20221101/checkpoints/checkpoint_00004000](gs://mlperf-llm-public2/gpt3_spmd1x64x24_tpuv4-3072_v84_20221101/checkpoints/checkpoint_00004000).
The common_bf16.json can be downloaded from: https://github.com/ShriyaPalsamudram/training/tree/LLM-NVIDIA-reference-draft/large_language_model/megatron-lm/scripts.
At one stage, there will be a merged directory and a universal directory, each requiring 2 TB of disk space for 96L. Therefore, to complete all the steps, it is necessary to have over 4TB of free disk space.
Additionally, the machine must have a minimum of 32 CPUs and 755GB of RAM to ensure proper functioning.
Before the checkpoint can be used, it must be converted by following the steps below:
1. Convert the paxml checkpoint to Megatron distributed using /root/MLPERF/benchmarks/gpt3/tools/convert_checkpoint/convert_paxml_optimizer.py
```
python3 /root/MLPERF/benchmarks/gpt3/tools/convert_checkpoint/convert_paxml_optimizer.py \
--google_ckpts checkpoint_00004000/ \
--output_dir megatron_merged_ckpt \
--num_layers 96 \
--params_file common_bf16.json \
--pool 1
```
2. Convert Megatron merged checkpoint to DeepSpeed universal.
To generate the mp-rank-files required in megatron_optim_merged_to_ds_universal_convert.py, the user needs to run GPT-3, which will generate these files based on the configuration used in the run.
This can be obtained by running a single step of GPT-3 and saving the checkpoint.
Please note that only this particular step of checkpoint peparation must be done using 8 HLS2 machines. The remaining steps can be performed on a CPU-only machine.
Please make sure /root/shared/hosts file contains a list of 8 IPs for HLS2 machines and SSH communication is properly configured.
For further details, refer to points 5 and 6 [here](#build-and-deploy-habanalabs-mlperf-training-31-container).
Once the setup is ready, proceed to run the single step for GPT3 as follows:
```
mkdir checkpoint_with_mp_rank_files
bash /root/MLPERF/benchmarks/gpt3/run_gpt.sh --hosts /root/shared/hosts --data-dir /root/datasets/ --output-dir /root/scratch --num-nodes 8 --data-parallel-size 1 --start-from-ckpt false --save-checkpoints-dir checkpoint_with_mp_rank_files --exit-interval 1 --global-batch-size 2048
```
Run megatron_optim_merged_to_ds_universal_convert.py to create the universal checkpoint:
```
mkdir -p /root/datasets/gpt3/universal-checkpoint
python3 /root/MLPERF/benchmarks/gpt3/tools/convert_checkpoint/megatron_optim_merged_to_ds_universal_convert.py \
--o /root/datasets/gpt3/universal-checkpoint/ --ds-mp-rank-files-dir checkpoint_with_mp_rank_files --megatron-lm-merged-input-dir megatron_merged_ckpt \
--tp 8 --pp 8 --nl 96 --iteration 3000 --global-batch-size 2048 --seq_length 2048 --lr-decay-samples 166809600 --lr-warmup-samples 407040 \
--pool 64 --model-parallel-same-config False --update-only-mp-rank-files False
```
### Dataset Preparation for PyTorch Stable Diffusion
The instruction for preparing the dataset is based on original MLCommons instruction.
Please follow instructions under the following link for more details:
https://github.com/mlcommons/training/tree/master/stable_diffusion
#### Generate training dataset (Preprocessed moments dataset):
Log into mlperf3.1 PyTorch container
```
export DATASET_PATH=/root/datasets/stable_diffusion/datasets/laion-400m/webdataset-moments-filtered
bash /root/MLPERF/benchmarks/stable_diffusion/scripts/datasets/laion400m-filtered-download-moments.sh --output-dir $DATASET_PATH
```
#### Generate validation dataset
Log into mlperf3.1 PyTorch container
```
export DATASET_DIR=/root/datasets/stable_diffusion/datasets/coco2014
bash /root/MLPERF/benchmarks/stable_diffusion/scripts/datasets/coco2014-validation-download-prompts.sh --output-dir $DATASET_DIR
```
##### Set ANNOTATION_FILE to the downloaded annotation file
```
export ANNOTATION_FILE=$DATASET_DIR/val2014_30k.tsv
```
```
bash /root/MLPERF/benchmarks/stable_diffusion/scripts/datasets/coco2014-validation-download-stats.sh --output-dir $DATASET_DIR
```
##### Set FID_GT_PATH to the downloaded npz file used for inception
```
export FID_GT_PATH=$DATASET_DIR/val2014_30k_stats.npz
```
#### Download the base checkpoint for Stable Diffusion: UNet, VAE, and OpenCLIP text embedder:
Reference: https://github.com/mlcommons/training/tree/master/stable_diffusion#downloading-the-checkpoints
Log into mlperf3.1 PyTorch container
```
export DATASET_DIR=/root/datasets/stable_diffusion/datasets/checkpoints/sd
bash /root/MLPERF/benchmarks/stable_diffusion/scripts/checkpoints/download_sd.sh --output-dir $DATASET_DIR
export BASE_CKPT=$DATASET_DIR/512-base-ema.ckpt
```
#### Generate the synthetic dataset for Stable Diffusion (warmup)
Uncompress any one data tar file from training data "example: $DATASET_PATH/00001.tar" and keep it in the input directory path. Set environment variables for input and output path and run the below script to generate the synthetic data at the output directory
Log into mlperf3.1 PyTorch container
```
cp /root/datasets/stable_diffusion/datasets/laion-400m/webdataset-moments-filtered/00001.tar /root/datasets/stable_diffusion/datasets/input_uncompressed_file/
cd /root/datasets/stable_diffusion/datasets/input_uncompressed_file/
tar -xvf 00001.tar; cd -;
export DATASET_PATH_UNCOMPRESSED=/root/datasets/stable_diffusion/datasets/input_uncompressed_file
export DATASET_PATH_OUTPUT=/root/datasets/stable_diffusion/datasets/
cd /root/MLPERF/benchmarks/stable_diffusion/scripts;
bash prepare_synthetic_data.sh; cd -;
```
After synthetic data preparation, copy generated SD_synthetic_data_10001.tar file to the path used via WARMUP_FILE in training
```
export WARMUP_FILE=$DATASET_PATH_OUTPUT//SD_synthetic_data_10001.tar
```
## Training BERT
### Training TensorFlow BERT
1. Inside the mlperf3.1 TensorFlow container, install BERT requirements.
```bash
export BERT_IMPLEMENTATIONS=/root/MLPERF/benchmarks/bert/implementations
pip install -r $BERT_IMPLEMENTATIONS/TensorFlow/nlp/bert/requirements.txt
```
2. Run the training.
```bash
cd $BERT_IMPLEMENTATIONS/HLS-Gaudi2-TF
./launch_bert_hvd.sh --config defaults.cfg
```
### Training PyTorch BERT
1. Inside the mlperf3.1 PyTorch container, install BERT requirements.
```bash
export BERT_IMPLEMENTATIONS=/root/MLPERF/benchmarks/bert/implementations
pip install -r $BERT_IMPLEMENTATIONS/PyTorch/requirements.txt
```
2. Run the training.
```bash
export PYTORCH_BERT_DATA=/root/datasets/pytorch_bert
cd $BERT_IMPLEMENTATIONS/HLS-Gaudi2-PT
./launch_bert_pytorch.sh --data-dir $PYTORCH_BERT_DATA
```
### TTT (Time to Train) Calculation for BERT
Results can be found in following output files:
* /tmp/bert_pretrain/phase_2/result_rank_0.txt for TensorFlow BERT
* /tmp/BERT_PRETRAINING/results/checkpoints/result_rank_0.txt for PyTorch BERT
To get the TTT from the training script output, run following command:
```bash
grep 'run_start\|run_stop' /path/to/output/file | grep worker0 | awk '{print $5}' | tr -d ',' | paste -sd " " - | awk '{print ($2 - $1) / 1000 / 60}'
```
## Training ResNet50
### Training TensorFlow ResNet50
1. Inside the mlperf3.1 TensorFlow container, install Resnet50 requirements.
```bash
export RESNET_IMPLEMENTATIONS=/root/MLPERF/benchmarks/resnet/implementations
pip install -r $RESNET_IMPLEMENTATIONS/TensorFlow/computer_vision/Resnets/resnet_keras/requirements.txt
```
2. Run the training.
```bash
cd $RESNET_IMPLEMENTATIONS/HLS-Gaudi2-TF
./launch_keras_resnet_hvd.sh --config $(pwd)/batch_256.cfg --jpeg-data-dir /root/datasets/imagenet --log_dir /tmp/resnet_log
```
### Training PyTorch ResNet50
1. Inside the mlperf3.1 PyTorch container, install Resnet50 requirements.
```bash
export RESNET_IMPLEMENTATIONS=/root/MLPERF/benchmarks/resnet/implementations
pip install -r $RESNET_IMPLEMENTATIONS/HLS-Gaudi2-PT/PyTorch/requirements.txt
```
2. Run the training.
```bash
cd $RESNET_IMPLEMENTATIONS/HLS-Gaudi2-PT
./launch_resnet.sh --config batch_256.cfg --data-dir /root/datasets/imagenet
```
### TTT (Time to Train) Calculation for ResNet50
To get the TTT from the training script output, run following command:
```bash
grep 'run_start\|run_stop' /tmp/resnet_log/result_rank_0.txt | grep worker0 | awk '{print $5}' | tr -d ',' | paste -sd " " - | awk '{print ($2 - $1) / 1000 / 60}'
```
## Training GPT3-175B
All the training steps for GPT3-175B should be performed in mlperf3.1 PyTorch container.
### Installing Requirements
The following requirements need to be installed on all machines participating in the training:
```
pip install git+https://github.com/HabanaAI/DeepSpeed.git
pip install -r /root/MLPERF/benchmarks/gpt3/requirements.txt
```
### Run and time
The latest Intel-HabanaLabs's software supports 8-bit floating-point precision (FP8) training for GPT3 model and MLPerf3.1 submissions for GPT3 have been conducted using FP8 precision.
Running the GPT3 model requires multiple machines. For example, 32 HLS2 machines: `HLS-Gaudi2-N32-PT system` or 48 HLS2 machines `HLS-Gaudi2-N48-PT system`.
Please set the paths for the dataset and the universal checkpoint, which should be created during [setup phase](#training-data-for-gpt3-175b).
```
export DATASET_DIR=/root/datasets/gpt3/c4/preprocessed_c4_spm
export CHECKPOINT_DIR=/root/datasets/gpt3/universal-checkpoint
```
Please make sure /root/shared/hosts file contains a list of IPs for HLS2 machines, and that SSH communication is properly configured.
For further details, refer to points 5 and 6 [here](#build-and-deploy-habanalabs-mlperf-training-31-container).
#### Running GPT3 on HLS-Gaudi2-N32-PT System
```
bash /root/MLPERF/benchmarks/gpt3/run_gpt.sh --data-dir $DATASET_DIR/ --universal-ckpt-path $CHECKPOINT_DIR/ \
--hosts /root/shared/hosts --output-dir /root/scratch --num-nodes 32 --data-parallel-size 4 --save-checkpoints false --mllog-output-path /root/scratch/result.txt --train-samples 6782976 --use-fp8-transformer-engine --global-batch-size 2048 --micro-batch-size 2 --eval-interval 12 --device-warmup true --device-warmup-dataset-path $DATASET_DIR/synthetic_text_document
```
#### Running GPT3 on HLS-Gaudi2-N48-PT System
```
bash /root/MLPERF/benchmarks/gpt3/run_gpt.sh --data-dir $DATASET_DIR/ --universal-ckpt-path $CHECKPOINT_DIR/ \
--hosts /root/shared/hosts --output-dir /root/scratch --num-nodes 48 --data-parallel-size 8 --pipeline-model-parallel-size 6 --save-checkpoints false --mllog-output-path /root/scratch/result.txt --train-samples 6782976 --global-batch-size 2048 --micro-batch-size 2 --eval-interval 12 --device-warmup true --device-warmup-dataset-path $DATASET_DIR/synthetic_text_document --use-fp8-transformer-engine
```
Training results will be stored in `/root/scratch` folder.
The `--save-checkpoints` is set to `false` as 96l checkpoints take a lot of disc space. In order to save the checkpoint after the run or save it with some frequency, please use `--save-checkpoints true` and manipulate `--save-interval` parameter.
The script will start from universal checkpoint and train up to 312 steps or the time, when validation log perplexity is below 2.69. According to the convergence point of GPT3 on HLS system, it should approximately run for 288 steps in order to reach 2.69 validation log perplexity. To reduce number of steps, you can use `--exit-interval` parameter or reduce train samples by `--train-samples` parameter.
### TTT (Time to Train) Calculation for GPT3-175B
To get the TTT from the training script output, run the following command:
```bash
grep 'run_start\|run_stop' /root/scratch/result.txt | awk '{print $5}' | tr -d ',' | paste -sd " " - | awk '{print ($2 - $1) / 1000 / 60}'
```
## Training PyTorch Stable Diffusion
#### Run the traning and validation steps
Following environment variables will be used to specify before training:
```
DATASET_PATH:= to the path where preprocessed data is located
ANNOTATION_FILE:= is the annotation file used for validation
FID_GT_PATH:= is the path for npz file used for inception
RESULTS_DIR:= to the path you want to save the results and checkpoint
POSTFIX_LOG_DIR:= postfix for logdir
WARMUP_FILE:= is the file used only in the warmup of the training
BASE_CKPT:= is the base checkpoint
```
```
For example:
export DATASET_PATH="/root/datasets/stable_diffusion/datasets/laion-400m/webdataset-moments-filtered/{00000..00831}.tar"
export ANNOTATION_FILE="/root/datasets/stable_diffusion/datasets/coco2014/val2014_30k.tsv"
export FID_GT_PATH="/root/datasets/stable_diffusion/datasets/coco2014/val2014_30k_stats.npz"
export RESULTS_DIR="/tmp/"
export POSTFIX_LOG_DIR="64x_run"
export WARMUP_FILE="/root/datasets/stable_diffusion/datasets/SD_synthetic_data_10001.tar"
export BASE_CKPT="/root/datasets/stable_diffusion/datasets/checkpoints/sd/512-base-ema.ckpt"
```
### Running Stable Difussion training on HLS-Gaudi2-N8-PT System
#### Follow below steps in sequence on each worker:
#### Step1: Installing Requirements
Log into mlperf3.1 PyTorch container and install the requirements
```
pip install -r /root/MLPERF/benchmarks/stable_diffusion/scripts/requirements.txt
```
#### Step2: Initialization to Clear Cache and Initialize MLLogging
```
bash /root/MLPERF/benchmarks/stable_diffusion/scripts/run_init.sh
```
#### Step3: Training
Each worker will have training command:
```
For example:
MASTER_PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} NODE_RANK={NODE_RANK} python3 -u root/MLPERF/benchmarks/stable_diffusion/main.py \
lightning.trainer.num_nodes=8 data.params.train.params.urls=${DATASET_PATH} lightning.modelcheckpoint.params.every_n_train_steps=1000 \
data.params.validation.params.annotations_file=${ANNOTATION_FILE} \
lightning.trainer.max_steps=5000 lightning.trainer.val_check_interval=<Greater_than_max_steps_to_avoid_online_val> \
lightning.modelcheckpoint.params.save_last=False model.params.hpu_graph=True -m train --ckpt {BASE_CKPT} \
-b configs/train_08x08x08.yaml -l {RESULTS_DIR} --autocast --warmup {WARMUP_FILE} --async_checkpoint -n {POSTFIX_LOG_DIR}
```
#### Step4: Offline validation for the checkpoints generated
```
For example:
MASTER_PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} NODE_RANK={NODE_RANK} python3 -u root/MLPERF/benchmarks/stable_diffusion/main.py \
lightning.trainer.num_nodes=8 data.params.validation.params.annotations_file=${ANNOTATION_FILE} \
model.params.validation_config.fid.gt_path=${FID_GT_PATH} model.params.load_unet=True -m validate \
--ckpt {RESULTS_DIR}/checkpoints/'epoch=000000-step=00000x000.ckpt' -b {BASE_CKPT} -b configs/train_08x08x08.yaml \
--current_validation_iter {Current_validation_iteration_number} --validation_iters {Total_validation_iteration_numbers}
```
## Supported Configurations
### TensorFlow ResNet-50, PyTorch BERT, PyTorch ResNet-50, PyTorch GPT3-175B
| Validated on | SynapseAI Version | Framework Version(s) | Mode |
| :----------: | :---------------: | :------------------: | :------: |
| Gaudi2 | 1.14.0 | TensorFlow 2.15.0 | Training |
| Gaudi2 | 1.14.0 | PyTorch 2.1.1 | Training |
### TensorFlow BERT, PyTorch Stable Diffusion
| Validated on | SynapseAI Version | Framework Version(s) | Mode |
| :----------: | :---------------: | :------------------: | :------: |
| Gaudi2 | 1.13.0 | TensorFlow 2.13.1 | Training |
| Gaudi2 | 1.13.0 | PyTorch 2.1.0 | Training |
## Changelog
### 1.14.0
- Updated scripts to enable dynamic shapes support for topologies:
- PyTorch Bert
### 1.13.0
- Updated scripts to cover MLPerf 3.1 submission, including but not limited to:
- Optimized GPT3 code by:
- FP8 support;
- Sequence Parallelism support;
- Fused Scaled Dot Product Attention;
- Device warmup.
- Added new benchmark: Stable Diffusion;
- Enabled using HPU Graphs by default for PyTorch ResNet50;
- Removed UNet3D and Bert 64xcards from submission.
### 1.12.0
- Removed the setting of the PT_HPU_LAZY_MODE environment variable in the script for Bert and ResNet50.
- Removed unused PT_HPU_ENABLE_SYNC_OUTPUT_HOST environment variable.
### 1.11.0
- Updated scripts to cover MLPerf 3.0 submission.
- Switched UNet3D, Bert, ResNet50 from HMP to Autocast.
- Added script for ImageNet unpacking.
- Reworked scripts and instruction for TensorFlow BERT data preprocessing.
- Add clearing deepspeed_config to force deepspeed to take config from args.deepspeed_configuration at initialize()
### 1.10.0
- Updated scripts to cover MLPerf 3.0 submission.
### 1.9.0
- Disabled auto dynamic shape support for Habana devices for PyTorch ResNet50.
### 1.8.0
- Prepared new scripts for PyTorch BERT data preprocessing.
- Moved data preprocessing instructions to docker environment.
### 1.7.0
- Updated scripts to cover MLPerf 2.1 submission.
### 1.6.0
- Removed obsolete files from TensorFlow/nlp/bert.
### 1.5.0
- Updated scripts to cover MLPerf 2.0 submission.
- Cleaned up ResNet requirements compared to the originally submitted ones.
- Removed run_bert_docker.sh and run_resnet50_docker.sh scripts.
### 1.4.0
- Switched from the deprecated TF_ENABLE_BF16_CONVERSION to TF_BF16_CONVERSION.
- Added TF_ENABLE_DYNAMIC_SHAPES to MLPerf launchers.
### 1.3.0
- Updated requirements.txt file for BERT and ResNet.
|