File size: 5,394 Bytes
45361be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from datasets import concatenate_datasets, load_dataset, load_from_disk
import argparse
from tokenizers import Tokenizer, decoders, models, pre_tokenizers, processors, trainers
from transformers import GPT2TokenizerFast, AutoTokenizer
from datasets import config
import logging

def initialize_logger(log_file):
    logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s')

def log_parameters(vocab_size, batch_size, fertility_score, proportion_continued_words, log_file='parameters.log'):
    initialize_logger(log_file)
    logging.info(f"Vocabulary Size: {vocab_size}, Batch Size: {batch_size}, Fertility Score: {fertility_score}, Proportion of Continued word: {proportion_continued_words}")

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--batch_size",
        type=int,
        required=True,
        help="Batch size to use for training"
    )
    parser.add_argument(
        "--vocab_size",
        type=int,
        required=True,
        help="Vocabulary size to use for tokenizer"
    )
    parser.add_argument(
        "--use_config",
        choices=['xlm-roberta', 'vanilla'],
        required=True,
        help="Use XLM-RoBERTa config or Vanilla BPE"
    )
    parser.add_argument(
        "--do_evaluate",
        action='store_true',
        help="Enable evaluation."
    )
    args = parser.parse_known_args()
    return args

def calculate_proportion_continued_words(tokenizer, sentences):
    total_continued_words = 0
    total_words = 0
    for sentence in sentences:
        tok = tokenizer.encode_plus(sentence, return_tensors="pt")
        input_ids = tok['input_ids'].squeeze(0)
        continued_word = False
        for i in range(1, len(input_ids)):
            if input_ids[i] != tokenizer.pad_token_id:
                if continued_word:
                    total_continued_words += 1
                continued_word = True
            else:
                continued_word = False
        total_words += len(sentence.split())
    proportion_continued_words = total_continued_words / total_words if total_words > 0 else 0
    return proportion_continued_words



def train_tokenizer(args):
    
    # configs = ['as', 'bd', 'bn', 'dg', 'en', 'gom', 'gu', 'hi', 'kha', 'kn', 'ks', 'mai', 'ml', 'mni', 'mr', 'ne', 'or', 'pa', 'sa', 'sat', 'sd', 'ta', 'te', 'ur']
    indic_datasets = []
    configs=['hi']
    # for c in configs:
        # indic_dataset = load_dataset('satpalsr/indicCorpv2', c, split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/')
        # indic_datasets.extend(indic_dataset)
    # wikidataset= load_dataset('wiki40b', 'en', split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/')
    indic_datasets_hi= load_dataset('satpalsr/indicCorpv2', 'hi', split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/')
    indic_datasets_en= load_dataset('satpalsr/indicCorpv2', 'en', split='train', cache_dir='/home1/BharatGPT_tokenizer/hf/')
    
    #  = wikidataset.remove_columns(['wikidata_id', 'version_id'])
    print(indic_datasets)
    # print(wikidataset)
    dataset = concatenate_datasets([indic_datasets_en,indic_datasets_hi])
    test_data = load_from_disk('samanantar_data')
    test_data = dataset['text'][:10000]
    print(f"[INFO] {len(test_data)}")
    print(f"[INFO] {len(dataset)}")
    # print(f"[INFO] {test_data[:10]}")

    def batch_iterator():
        for idx in range(0, len(dataset), args.batch_size):
            yield dataset[idx: idx + args.batch_size]['text']

    if args.use_config == 'vanilla':
        tokenizer = Tokenizer(models.BPE())
        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
        print(f"[INFO] The brown fox jumped over the lazy dog\n{tokenizer.pre_tokenizer.pre_tokenize_str('The brown fox jumped over the lazy dog')}")
        print(f"[INFO] Training...")
        trainer = trainers.BpeTrainer(vocab_size=args.vocab_size, special_tokens=["<|endoftext|>"])
        tokenizer.train_from_iterator(batch_iterator(), trainer=trainer)
        tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
        tokenizer.decoder = decoders.ByteLevel()
        tokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer)
    elif args.use_config == 'xlm-roberta':
        print("skipped")
        tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
        trained_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size)

    trained_tokenizer.save_pretrained('hi-bgpt-bpe-tokenizer1')
    print(f"[INFO] Tokenizer saved to disk")

    if args.do_evaluate:
        print(f"[INFO] Running evaluation using fertility and fraction of continued words")
        tokenizer = AutoTokenizer.from_pretrained('hi-bgpt-bpe-tokenizer1')
        # tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
        fertility = 0
        for sentence in test_data: 
            tok=tokenizer(sentence)
            fertility += len(tok['input_ids']) / len(sentence.split())
        average_fertility = fertility / len(test_data)
        proportion_continued_words = calculate_proportion_continued_words(tokenizer, test_data)
        log_parameters(args.vocab_size, args.batch_size, average_fertility, proportion_continued_words)

def main():
    args, _ = parse_arguments()
    train_tokenizer(args)

if __name__ == "__main__":
    main()