applied-ai-018's picture
Add files using upload-large-folder tool
8e72e9a verified
#!/bin/bash
set -ex
data_options=" \
--vocab-file ${VOCAB_PATH} \
--merge-file ${MERGE_PATH} \
--data-path ${DATA_PATH} \
--data-impl mmap"
BASE_PATH=$PWD/dataset/
DATA_PATH=${BASE_PATH}/BookCorpusDataset_text_document
DS_CONFIG=ds_config.json
# Hostfile path
HF=/job/hostfile
# Disabling tensor/pipeline parallelism
TP=1
PP=1
# HEADS ~= HIDDEN/128
# Model: Benchmark model
NLAYERS=1
HIDDEN=12288
HEADS=96
SEQ=1024
MICRO_BATCH=4
NODES=2
GPN=8
GLOBAL_BATCH=$(( ${GPN} * ${MICRO_BATCH} * ${NODES} ))
# Initial power scale for loss
SP=15
# Uncomment/comment one of the following blocks.
# For 1T model, start with microbatch=1, try to get 2 and 4. If OOM w/ 4, use cpu-offloading
# Set to cpu for offloading to cpu for larger models
#OFFLOAD_DEVICE="cpu"
#CPU_OPTIM=" --cpu-optimizer"
# Set to none and empty string for no cpu offloading
OFFLOAD_DEVICE="none"
CPU_OPTIM=" "
ZERO_STAGE=3
OUTPUT_DIR=ds_z_off-${OFFLOAD_DEVICE}_stage_${ZERO_STAGE}_nl${NLAYERS}_hs${HIDDEN}_mb${MICRO_BATCH}_seq${SEQ}_gb${GLOBAL_BATCH}_nodes${NODES}
#OUTPUT_DIR=baseline_nl${NLAYERS}_hs${HIDDEN}_gb${GLOBAL_BATCH}_mb${MICRO_BATCH}
mkdir -p $OUTPUT_DIR
cat <<EOT > $DS_CONFIG
{
"train_batch_size" : $GLOBAL_BATCH,
"train_micro_batch_size_per_gpu": $MICRO_BATCH,
"steps_per_print": 1,
"gradient_accumulation_steps": 1,
"zero_optimization": {
"stage": 3,
"stage3_max_live_parameters": 3e9,
"stage3_max_reuse_distance": 3e9,
"stage3_param_persistence_threshold": 1e5,
"stage3_prefetch_bucket_size": 5e7,
"contiguous_gradients": true,
"overlap_comm": true,
"reduce_bucket_size": 90000000,
"sub_group_size": 1e9,
"offload_optimizer": {
"device": "$OFFLOAD_DEVICE",
"buffer_count": 4,
"pipeline_read": false,
"pipeline_write": false,
"pin_memory": true
}
},
"gradient_clipping": 1.0,
"fp16": {
"enabled": true,
"initial_scale_power" : $SP,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"wall_clock_breakdown": true,
"zero_allow_untested_optimizer": false,
"aio": {
"block_size": 1048576,
"queue_depth": 16,
"single_submit": false,
"overlap_events": true,
"thread_count": 2
}
}
EOT
export NCCL_DEBUG=warn
ds_args=" "
ds_args=" --deepspeed ${ds_args}"
ds_args=" --no-pipeline-parallel ${ds_args}"
ds_args=" --deepspeed_config=$DS_CONFIG ${ds_args}"
ds_args=" --zero-stage=$ZERO_STAGE ${ds_args}"
ds_args=" --deepspeed-activation-checkpointing ${ds_args}"
deepspeed --force_multi --num_nodes=$NODES --hostfile $HF pretrain_gpt.py \
--tensor-model-parallel-size $TP \
--pipeline-model-parallel-size $PP \
--num-layers $NLAYERS \
--hidden-size $HIDDEN \
--num-attention-heads $HEADS \
--seq-length $SEQ \
--loss-scale $SP \
--max-position-embeddings $SEQ \
--micro-batch-size $MICRO_BATCH \
--global-batch-size $GLOBAL_BATCH \
--train-iters 50 \
--lr 6.0e-5 \
--min-lr 6.0e-6 \
--lr-decay-style cosine \
--log-interval 1 \
--eval-iters 40 \
--eval-interval 1000 \
--data-path $DATA_PATH \
--vocab-file $BASE_PATH/gpt2-vocab.json \
--merge-file $BASE_PATH/gpt2-merges.txt \
--save-interval 1000 \
--split 98,2,0 \
--clip-grad 1.0 \
--weight-decay 0.1 \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--init-method-std 0.006 \
--fp16 \
--checkpoint-activations \
--tensorboard-dir $OUTPUT_DIR \
$CPU_OPTIM $ds_args \
--exit-interval 5000 | tee ${OUTPUT_DIR}/output.log