peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/examples_deepspeed
/compression
/ds_evalharness.sh
# This is an example zero-shot eval script. Please first read the readme_evalharness.md under the ../MoE directory. | |
# CHECKPOINT_PATH=/blob/users/minjiaz/compression_library/checkpoint/125M10L_Compression_Test_INT8_64gpu_lr6e-5_tokens5.25B_nocl_alpha-no_pp/global_step2000/ | |
# CHECKPOINT_PATH=/blob/users/conglli/project/gpt3_with_pile/checkpoint/gpt3-with-pile-0.125B-lr-2.4e-3-minlr-6.0e-5-bs-2048-gpus-64-zero-0-mp-1-pp-1-no_pp-cl-startseqlen-72-step-27638-token-60B/global_step71000/ | |
# CHECKPOINT_PATH=/blob/users/minjiaz/compression_library/checkpoint/125M12L_Compression_Test_INT8_64gpu_lr6e-5_tokens5.25B_nocl_alpha-no_pp/global_step5000/ | |
CHECKPOINT_PATH=/blob/users/minjiaz/project/gpt3_distillation/checkpoint/gpt3-kd-test2-alpha1-with-pile-0.125B-lr-2.4e-3-minlr-6.0e-5-bs-2048-gpus-15-zero-0-mp-1-pp-1-no_pp-cl-startseqlen-72-step-27638-token-60B/global_step71426/ | |
CONFIG_PATH=ds_config_gpt3-with-pile-0.125B-lr-2.4e-3-minlr-6.0e-5-bs-2048-gpus--1-zero-0-mp-1-pp-1-no_pp-cl-startseqlen-72-step-27638-token-60B.json | |
RESULT_PATH=gpt3-with-pile-0.125B-lr-2.4e-3-minlr-6.0e-5-bs-2048-gpus-128-zero-0-mp-1-pp-1-no_pp-cl-startseqlen-72-step-20728-token-45B_global_step81566.log | |
PP_SIZE=1 | |
TP_SIZE=1 | |
NO_PP="true" | |
EP_PARALLEL_SIZE=1 | |
# Currently eval harness does not support data parallel | |
# However, for MoE models it's possible to enable a "fake data parallel" | |
# in order to load experts on multiple gpus. At the same time, it's not | |
# real data parallel because we load the same data on all gpus. | |
# On the other hand, it's better to use less number of gpus than training, | |
# to reduce communication overhead. | |
NUM_NODE=1 | |
NUM_GPU_PER_NODE=1 | |
# TASKS="lambada" | |
# WikiText-2, not used in GPT-3 paper but used in GPT-2 paper | |
TASKS="lambada,wikitext" | |
# Tasks that appeared in GPT-3 paper (sorted based on the order in paper), plus WikiText-2. | |
# TASKS="hellaswag,lambada,triviaqa,webqs,winogrande,piqa,arc_challenge,arc_easy,openbookqa,race,boolq,cb,copa,rte,wic,wsc,multirc,record,anli_r1,anli_r2,anli_r3,wikitext" | |
# All tasks that confirmed to work, there are more tasks on https://github.com/EleutherAI/lm-evaluation-harness that we didn't test. | |
# TASKS="hellaswag,lambada,triviaqa,webqs,winogrande,piqa,arc_challenge,arc_easy,openbookqa,race,boolq,cb,copa,rte,wic,wsc,multirc,record,anli_r1,anli_r2,anli_r3,wikitext,logiqa,mathqa,mc_taco,mrpc,prost,pubmedqa,qnli,qqp,sciq,sst,wnli" | |
VOCAB_FILE=/blob/data/the_pile_public_merged_nopreprocessing/gpt2-vocab.json | |
MERGE_FILE=/blob/data/the_pile_public_merged_nopreprocessing/gpt2-merges.txt | |
# export HF_DATASETS_OFFLINE=1 | |
# Dummy arguments to make megatron happy. No need to configure them. | |
# The reason we don't need to configure them and many other arguments is | |
# because the eval framework will read the arguments from checkpoint file. | |
MEGATRON_REQUIRED_ARGS="\ | |
--num-layers -1\ | |
--hidden-size -1\ | |
--num-attention-heads -1\ | |
--seq-length -1 \ | |
--max-position-embeddings -1 | |
" | |
CMD="../../tasks/eval_harness/evaluate.py \ | |
--load $CHECKPOINT_PATH\ | |
--tensor-model-parallel-size $TP_SIZE \ | |
--pipeline-model-parallel-size $PP_SIZE\ | |
--moe-expert-parallel-size ${EP_PARALLEL_SIZE} \ | |
--vocab-file $VOCAB_FILE\ | |
--merge-file $MERGE_FILE\ | |
--micro-batch-size 12\ | |
--no-load-optim \ | |
--no-load-rng \ | |
--inference \ | |
--disable-moe-token-dropping \ | |
--tokenizer-type GPT2BPETokenizer \ | |
--adaptive_seq_len\ | |
--eval_fp32\ | |
--task_list $TASKS\ | |
--results_path $RESULT_PATH \ | |
--deepspeed \ | |
--deepspeed_config $CONFIG_PATH \ | |
$MEGATRON_REQUIRED_ARGS\ | |
" | |
if [[ "${NO_PP}" = "true" ]]; then | |
CMD="${CMD} \ | |
--no-pipeline-parallel" | |
fi | |
LAUNCHER="deepspeed --num_nodes $NUM_NODE --num_gpus $NUM_GPU_PER_NODE" | |
$LAUNCHER $CMD |