peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/examples_deepspeed
/pretrain_llama_distributed.sh
# This example script is contributed by external user https://github.com/LydiaXiaohongLi | |
set -ex | |
###################################### | |
# Change the below configurations here | |
BASE_PATH=./tmp | |
DS_CONFIG=${BASE_PATH}/deepspeed.json | |
DATASET_1="./tmp/data/bookcorpus_train_1m_text_sentence" | |
DATASET="1 ${DATASET_1}" | |
CHECKPOINT_PATH=./tmp | |
TOKENIZER_PATH=./tmp/tokenizer.model # offical llama tokenizer.model | |
TP=2 | |
PP=2 | |
ZERO_STAGE=0 | |
GPUS_PER_NODE=8 | |
MASTER_ADDR=localhost | |
MASTER_PORT=6000 | |
NNODES=1 | |
NODE_RANK=0 | |
HIDDEN_SIZE=2048 # e.g. llama-13b: 5120 | |
FFN_HIDDEN_SIZE=5504 # e.g. llama-13b: 13824 | |
NUM_LAYERS=24 # e.g. llama-13b: 40 | |
NUM_HEADS=16 # e.g. llama-13b: 40 | |
SEQ_LENGTH=2048 | |
MICRO_BATCH_SIZE=4 | |
GLOBAL_BATCH_SIZE=32 # e.g. llama: 4M tokens | |
TRAIN_STEPS=250000 # e.g. llama: 1T tokens / 4M tokens_per_batch = 250000 steps | |
LR=3e-4 | |
MIN_LR=3e-5 | |
LR_WARMUP_STEPS=2000 | |
WEIGHT_DECAY=0.1 | |
GRAD_CLIP=1 | |
## Activation checkpointing saves GPU memory, but reduces training speed | |
# activation_checkpoint="true" | |
activation_checkpoint="false" | |
# Below configuration required for llama model as per llama paper | |
# --no-query-key-layer-scaling \ | |
# --attention-dropout 0 \ | |
# --hidden-dropout 0 \ | |
# --use-rotary-position-embeddings \ | |
# --untie-embeddings-and-output-weights \ | |
# --swiglu \ | |
# --normalization rmsnorm \ | |
# --disable-bias-linear \ | |
###################################### | |
cat <<EOT > $DS_CONFIG | |
{ | |
"train_batch_size" : $GLOBAL_BATCH_SIZE, | |
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, | |
"steps_per_print": 1, | |
"zero_optimization": { | |
"stage": $ZERO_STAGE | |
}, | |
"bf16": { | |
"enabled": true | |
} | |
} | |
EOT | |
ds_args="" | |
ds_args=" --deepspeed ${ds_args}" | |
ds_args=" --deepspeed_config=$DS_CONFIG ${ds_args}" | |
ds_args=" --zero-stage=$ZERO_STAGE ${ds_args}" | |
if [ "${activation_checkpoint}" = "true" ]; then | |
ds_args="--deepspeed-activation-checkpointing ${ds_args}" | |
## old argument for recomputing the transformer layer | |
# ds_args="--checkpoint-activations ${ds_args}" | |
## new argument for recomputing the transformer layer | |
ds_args="--recompute-granularity full --recompute-method uniform ${ds_args}" | |
## new argument for recomputing only the attention layer | |
# ds_args="--recompute-granularity selective ${ds_args}" | |
fi | |
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" | |
torchrun $DISTRIBUTED_ARGS \ | |
pretrain_gpt.py \ | |
--tensor-model-parallel-size $TP \ | |
--pipeline-model-parallel-size $PP \ | |
--num-layers $NUM_LAYERS \ | |
--hidden-size $HIDDEN_SIZE \ | |
--ffn-hidden-size $FFN_HIDDEN_SIZE \ | |
--num-attention-heads $NUM_HEADS \ | |
--micro-batch-size $MICRO_BATCH_SIZE \ | |
--global-batch-size $GLOBAL_BATCH_SIZE \ | |
--seq-length $SEQ_LENGTH \ | |
--max-position-embeddings $SEQ_LENGTH \ | |
--train-iters $TRAIN_STEPS \ | |
--save $CHECKPOINT_PATH \ | |
--load $CHECKPOINT_PATH \ | |
--data-path $DATASET \ | |
--data-impl mmap \ | |
--tokenizer-type GPTSentencePieceTokenizer \ | |
--tokenizer-model $TOKENIZER_PATH \ | |
--split 949,50,1 \ | |
--distributed-backend nccl \ | |
--lr $LR \ | |
--lr-decay-style cosine \ | |
--min-lr $MIN_LR \ | |
--weight-decay $WEIGHT_DECAY \ | |
--clip-grad $GRAD_CLIP \ | |
--lr-warmup-iters $LR_WARMUP_STEPS \ | |
--optimizer adam \ | |
--adam-beta1 0.9 \ | |
--adam-beta2 0.95 \ | |
--log-interval 1 \ | |
--save-interval 10000 \ | |
--eval-interval 1000 \ | |
--eval-iters 10 \ | |
--bf16 \ | |
--no-query-key-layer-scaling \ | |
--attention-dropout 0 \ | |
--hidden-dropout 0 \ | |
--use-rotary-position-embeddings \ | |
--untie-embeddings-and-output-weights \ | |
--swiglu \ | |
--normalization rmsnorm \ | |
--disable-bias-linear \ | |
$ds_args |