applied-ai-018's picture
Add files using upload-large-folder tool
f0e5081 verified
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Blendable dataset."""
import hashlib
import os
import time
import numpy as np
import torch
from deepspeed.accelerator import get_accelerator
from megatron import print_rank_0
from megatron.core import mpu
class BlendableDataset(torch.utils.data.Dataset):
def __init__(self, datasets, weights, size, *,
data_cache_path=None):
self.datasets = datasets
num_datasets = len(datasets)
assert num_datasets == len(weights)
self.size = size
if size == -1:
self.size = 0
for dataset in self.datasets:
self.size += len(dataset)
# Normalize weights.
weights = np.array(weights, dtype=np.float64)
sum_weights = np.sum(weights)
assert sum_weights > 0.0
weights /= sum_weights
# Build indicies.
def _build_indices():
start_time = time.time()
assert num_datasets < 255
dataset_index = np.zeros(self.size, dtype=np.uint8)
dataset_sample_index = np.zeros(self.size, dtype=np.int64)
from megatron.data import helpers
helpers.build_blending_indices(dataset_index, dataset_sample_index,
weights, num_datasets, self.size,
torch.distributed.get_rank() == 0)
print_rank_0('> elapsed time for building blendable dataset indices: '
'{:.2f} (sec)'.format(time.time() - start_time))
return dataset_index, dataset_sample_index
desc = "Blendable dataset\n\n"
desc += "Datasets:\n"
for dataset in datasets:
desc += dataset.desc + "\n\n"
desc += f"Weights: {weights}\n"
desc += f"Size: {size}\n"
self.desc = desc
if data_cache_path:
desc_hash = hashlib.md5(desc.encode('utf-8')).hexdigest()
desc_path = os.path.join(data_cache_path, desc_hash + ".dsc")
index_path = os.path.join(data_cache_path, desc_hash + "_index.npy")
sample_index_path = os.path.join(data_cache_path, desc_hash + "_sample_index.npy")
cache_hit = os.path.isfile(index_path) and os.path.isfile(sample_index_path)
cache_success = True
if torch.distributed.get_rank() == 0 and not cache_hit:
print(' > WARNING: could not find index map files for blendable'
' dataset, building indices on rank 0 ...', flush=True)
dataset_index, dataset_sample_index = _build_indices()
try:
os.makedirs(os.path.dirname(index_path), exist_ok=True)
with open(desc_path, 'wt') as fd:
fd.write(desc)
np.save(index_path, dataset_index, allow_pickle=True)
np.save(sample_index_path, dataset_sample_index,
allow_pickle=True)
except OSError:
print(f'There was an error trying to create the data cache directory ({data_cache_path})')
print('or a file in it. This is set with the --data-cache-path argument. Please')
print('ensure you have write access to this directory or specify one that you do have')
print('write access to.')
cache_success = False
counts = get_accelerator().LongTensor([cache_success])
torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
if counts[0].item() != (
torch.distributed.get_world_size() //
torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()) //
torch.distributed.get_world_size(group=mpu.get_sequence_parallel_group())):
print_rank_0("Data index creation unsuccessful, exiting.")
exit()
# Load on all ranks.
print_rank_0(f'> loading blendable dataset index: {index_path}')
self.dataset_index = np.load(index_path, allow_pickle=True, mmap_mode='r')
assert self.dataset_index.size == self.size
print_rank_0(f'> loading blendable dataset sample index: {sample_index_path}')
self.dataset_sample_index = np.load(sample_index_path, allow_pickle=True, mmap_mode='r')
assert self.dataset_sample_index.size == self.size
else:
self.dataset_index, self.dataset_sample_index = _build_indices()
# Check size
_ = self.__getitem__(self.size - 1)
try:
_ = self.__getitem__(self.size)
raise RuntimeError('BlendedDataset size is improperly bounded')
except IndexError:
pass
print_rank_0('> size of blendable dataset: '
'{} samples'.format(self.size))
def __len__(self):
return self.size
def __getitem__(self, idx):
dataset_idx = self.dataset_index[idx]
sample_idx = self.dataset_sample_index[idx]
return {
"dataset_idx" : dataset_idx,
**self.datasets[dataset_idx][sample_idx],
}