peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/data
/blendable_dataset.py
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Blendable dataset.""" | |
import hashlib | |
import os | |
import time | |
import numpy as np | |
import torch | |
from deepspeed.accelerator import get_accelerator | |
from megatron import print_rank_0 | |
from megatron.core import mpu | |
class BlendableDataset(torch.utils.data.Dataset): | |
def __init__(self, datasets, weights, size, *, | |
data_cache_path=None): | |
self.datasets = datasets | |
num_datasets = len(datasets) | |
assert num_datasets == len(weights) | |
self.size = size | |
if size == -1: | |
self.size = 0 | |
for dataset in self.datasets: | |
self.size += len(dataset) | |
# Normalize weights. | |
weights = np.array(weights, dtype=np.float64) | |
sum_weights = np.sum(weights) | |
assert sum_weights > 0.0 | |
weights /= sum_weights | |
# Build indicies. | |
def _build_indices(): | |
start_time = time.time() | |
assert num_datasets < 255 | |
dataset_index = np.zeros(self.size, dtype=np.uint8) | |
dataset_sample_index = np.zeros(self.size, dtype=np.int64) | |
from megatron.data import helpers | |
helpers.build_blending_indices(dataset_index, dataset_sample_index, | |
weights, num_datasets, self.size, | |
torch.distributed.get_rank() == 0) | |
print_rank_0('> elapsed time for building blendable dataset indices: ' | |
'{:.2f} (sec)'.format(time.time() - start_time)) | |
return dataset_index, dataset_sample_index | |
desc = "Blendable dataset\n\n" | |
desc += "Datasets:\n" | |
for dataset in datasets: | |
desc += dataset.desc + "\n\n" | |
desc += f"Weights: {weights}\n" | |
desc += f"Size: {size}\n" | |
self.desc = desc | |
if data_cache_path: | |
desc_hash = hashlib.md5(desc.encode('utf-8')).hexdigest() | |
desc_path = os.path.join(data_cache_path, desc_hash + ".dsc") | |
index_path = os.path.join(data_cache_path, desc_hash + "_index.npy") | |
sample_index_path = os.path.join(data_cache_path, desc_hash + "_sample_index.npy") | |
cache_hit = os.path.isfile(index_path) and os.path.isfile(sample_index_path) | |
cache_success = True | |
if torch.distributed.get_rank() == 0 and not cache_hit: | |
print(' > WARNING: could not find index map files for blendable' | |
' dataset, building indices on rank 0 ...', flush=True) | |
dataset_index, dataset_sample_index = _build_indices() | |
try: | |
os.makedirs(os.path.dirname(index_path), exist_ok=True) | |
with open(desc_path, 'wt') as fd: | |
fd.write(desc) | |
np.save(index_path, dataset_index, allow_pickle=True) | |
np.save(sample_index_path, dataset_sample_index, | |
allow_pickle=True) | |
except OSError: | |
print(f'There was an error trying to create the data cache directory ({data_cache_path})') | |
print('or a file in it. This is set with the --data-cache-path argument. Please') | |
print('ensure you have write access to this directory or specify one that you do have') | |
print('write access to.') | |
cache_success = False | |
counts = get_accelerator().LongTensor([cache_success]) | |
torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) | |
torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group()) | |
if counts[0].item() != ( | |
torch.distributed.get_world_size() // | |
torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()) // | |
torch.distributed.get_world_size(group=mpu.get_sequence_parallel_group())): | |
print_rank_0("Data index creation unsuccessful, exiting.") | |
exit() | |
# Load on all ranks. | |
print_rank_0(f'> loading blendable dataset index: {index_path}') | |
self.dataset_index = np.load(index_path, allow_pickle=True, mmap_mode='r') | |
assert self.dataset_index.size == self.size | |
print_rank_0(f'> loading blendable dataset sample index: {sample_index_path}') | |
self.dataset_sample_index = np.load(sample_index_path, allow_pickle=True, mmap_mode='r') | |
assert self.dataset_sample_index.size == self.size | |
else: | |
self.dataset_index, self.dataset_sample_index = _build_indices() | |
# Check size | |
_ = self.__getitem__(self.size - 1) | |
try: | |
_ = self.__getitem__(self.size) | |
raise RuntimeError('BlendedDataset size is improperly bounded') | |
except IndexError: | |
pass | |
print_rank_0('> size of blendable dataset: ' | |
'{} samples'.format(self.size)) | |
def __len__(self): | |
return self.size | |
def __getitem__(self, idx): | |
dataset_idx = self.dataset_index[idx] | |
sample_idx = self.dataset_sample_index[idx] | |
return { | |
"dataset_idx" : dataset_idx, | |
**self.datasets[dataset_idx][sample_idx], | |
} | |