peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/data
/ict_dataset.py
import itertools | |
import random | |
import numpy as np | |
from torch.utils.data import Dataset | |
from megatron import get_tokenizer | |
from megatron import get_args | |
from megatron.data.dataset_utils import get_indexed_dataset_ | |
from megatron.data.realm_dataset_utils import get_block_samples_mapping | |
def make_attention_mask(source_block, target_block): | |
""" | |
Returns a 2-dimensional (2-D) attention mask | |
:param source_block: 1-D array | |
:param target_block: 1-D array | |
""" | |
mask = (target_block[None, :] >= 1) * (source_block[:, None] >= 1) | |
mask = mask.astype(np.int64) | |
# (source_length, target_length) | |
return mask | |
def get_ict_dataset(use_titles=True, query_in_block_prob=1): | |
"""Get a dataset which uses block samples mappings to get ICT/block indexing data (via get_block()) | |
rather than for training, since it is only built with a single epoch sample mapping. | |
""" | |
args = get_args() | |
block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True) | |
titles_dataset = get_indexed_dataset_(args.titles_data_path, 'mmap', True) | |
kwargs = dict( | |
name='full', | |
block_dataset=block_dataset, | |
title_dataset=titles_dataset, | |
data_prefix=args.data_path, | |
num_epochs=1, | |
max_num_samples=None, | |
max_seq_length=args.seq_length, | |
seed=1, | |
query_in_block_prob=query_in_block_prob, | |
use_titles=use_titles, | |
use_one_sent_docs=args.use_one_sent_docs | |
) | |
dataset = ICTDataset(**kwargs) | |
return dataset | |
class ICTDataset(Dataset): | |
"""Dataset containing sentences and their blocks for an inverse cloze task.""" | |
def __init__(self, name, block_dataset, title_dataset, data_prefix, | |
num_epochs, max_num_samples, max_seq_length, query_in_block_prob, | |
seed, use_titles=True, use_one_sent_docs=False, binary_head=False): | |
self.name = name | |
self.seed = seed | |
self.max_seq_length = max_seq_length | |
self.query_in_block_prob = query_in_block_prob | |
self.block_dataset = block_dataset | |
self.title_dataset = title_dataset | |
self.rng = random.Random(self.seed) | |
self.use_titles = use_titles | |
self.use_one_sent_docs = use_one_sent_docs | |
self.samples_mapping = get_block_samples_mapping( | |
block_dataset, title_dataset, data_prefix, num_epochs, | |
max_num_samples, max_seq_length, seed, name, use_one_sent_docs) | |
self.tokenizer = get_tokenizer() | |
self.vocab_id_list = list(self.tokenizer.inv_vocab.keys()) | |
self.vocab_id_to_token_list = self.tokenizer.inv_vocab | |
self.cls_id = self.tokenizer.cls | |
self.sep_id = self.tokenizer.sep | |
self.mask_id = self.tokenizer.mask | |
self.pad_id = self.tokenizer.pad | |
def __len__(self): | |
return len(self.samples_mapping) | |
def __getitem__(self, idx): | |
"""Get an ICT example of a pseudo-query and the block of text from which it was extracted""" | |
sample_data = self.samples_mapping[idx] | |
start_idx, end_idx, doc_idx, block_idx = sample_data.as_tuple() | |
if self.use_titles: | |
title = self.title_dataset[int(doc_idx)] | |
title_pad_offset = 3 + len(title) | |
else: | |
title = None | |
title_pad_offset = 2 | |
block = [self.block_dataset[i] for i in range(start_idx, end_idx)] | |
assert len(block) > 1 or self.use_one_sent_docs or self.query_in_block_prob == 1 | |
# randint() is inclusive for Python rng | |
rand_sent_idx = self.rng.randint(0, len(block) - 1) | |
# keep the query in the context query_in_block_prob fraction of the time. | |
if self.rng.random() < self.query_in_block_prob: | |
query = block[rand_sent_idx].copy() | |
else: | |
query = block.pop(rand_sent_idx) | |
# still need to truncate because blocks are concluded when | |
# the sentence lengths have exceeded max_seq_length. | |
query = query[:self.max_seq_length - 2] | |
block = list(itertools.chain(*block))[:self.max_seq_length - title_pad_offset] | |
query_tokens, query_pad_mask = self.concat_and_pad_tokens(query) | |
context_tokens, context_pad_mask = self.concat_and_pad_tokens(block, title) | |
query_mask = make_attention_mask(query_tokens, query_tokens) | |
context_mask = make_attention_mask(context_tokens, context_tokens) | |
block_data = sample_data.as_array() | |
sample = { | |
'query_tokens': query_tokens, | |
'query_mask': query_mask, | |
'query_pad_mask': query_pad_mask, | |
'context_tokens': context_tokens, | |
'context_mask': context_mask, | |
'context_pad_mask': context_pad_mask, | |
'block_data': block_data, | |
} | |
return sample | |
def get_block(self, start_idx, end_idx, doc_idx): | |
"""Get the IDs for an evidence block plus the title of the corresponding document""" | |
block = [self.block_dataset[i] for i in range(start_idx, end_idx)] | |
title = self.title_dataset[int(doc_idx)] | |
block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))] | |
block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title) | |
return block_tokens, block_pad_mask | |
def get_null_block(self): | |
"""Get empty block and title - used in REALM pretraining""" | |
block, title = [], [] | |
block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title) | |
return block_tokens, block_pad_mask | |
def concat_and_pad_tokens(self, tokens, title=None): | |
"""Concat with special tokens and pad sequence to self.max_seq_length""" | |
tokens = list(tokens) | |
if title is None: | |
tokens = [self.cls_id] + tokens + [self.sep_id] | |
else: | |
title = list(title) | |
tokens = [self.cls_id] + title + [self.sep_id] + tokens + [self.sep_id] | |
assert len(tokens) <= self.max_seq_length | |
num_pad = self.max_seq_length - len(tokens) | |
pad_mask = [1] * len(tokens) + [0] * num_pad | |
tokens += [self.pad_id] * num_pad | |
return np.array(tokens), np.array(pad_mask) | |