peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/data
/orqa_wiki_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Wikipedia dataset from DPR code for ORQA.""" | |
from abc import ABC | |
import csv | |
import numpy as np | |
import random | |
import torch | |
from torch.utils.data import Dataset | |
from megatron import print_rank_0, get_args, get_tokenizer | |
from megatron.core import tensor_parallel | |
from megatron.data.biencoder_dataset_utils import make_attention_mask | |
def get_open_retrieval_wiki_dataset(): | |
args = get_args() | |
tokenizer = get_tokenizer() | |
dataset = OpenRetrievalEvidenceDataset('2018 Wikipedia from DPR codebase', | |
'evidence', | |
args.evidence_data_path, | |
tokenizer, | |
args.retriever_seq_length) | |
return dataset | |
def get_open_retrieval_batch(data_iterator): | |
# Items and their type. | |
keys = ['row_id', 'context', 'context_mask', 'context_types', | |
'context_pad_mask'] | |
datatype = torch.int64 | |
# Broadcast data. | |
data = None if data_iterator is None else next(data_iterator) | |
data_b = tensor_parallel.broadcast_data(keys, data, datatype) | |
# Unpack. | |
row_id = data_b['row_id'].long() | |
context = data_b['context'].long() | |
# TODO: make the context mask a binary one | |
context_mask = (data_b['context_mask'] < 0.5) | |
context_types = data_b['context_types'].long() | |
context_pad_mask = data_b['context_pad_mask'].long() | |
return row_id, context, context_mask, context_types, context_pad_mask | |
def build_tokens_types_paddings_from_text(row, tokenizer, max_seq_length): | |
"""Build token types and paddings, trim if needed, and pad if needed.""" | |
title_ids = tokenizer.tokenize(row['title']) | |
context_ids = tokenizer.tokenize(row['text']) | |
# Appending the title of the context at front | |
extended_context_ids = title_ids + [tokenizer.sep_id] + context_ids | |
context_ids, context_types, context_pad_mask = \ | |
build_tokens_types_paddings_from_ids(extended_context_ids, | |
max_seq_length, tokenizer.cls, tokenizer.sep, tokenizer.pad) | |
return context_ids, context_types, context_pad_mask | |
# noinspection DuplicatedCode | |
def build_tokens_types_paddings_from_ids(text_ids, max_seq_length, | |
cls_id, sep_id, pad_id): | |
"""Build token types and paddings, trim if needed, and pad if needed.""" | |
enc_ids = [] | |
tokentypes_enc = [] | |
# [CLS]. | |
enc_ids.append(cls_id) | |
tokentypes_enc.append(0) | |
# A. | |
len_src = len(text_ids) | |
enc_ids.extend(text_ids) | |
tokentypes_enc.extend([0] * len_src) | |
# Cap the size. | |
if len(enc_ids) > max_seq_length - 1: | |
enc_ids = enc_ids[0: max_seq_length - 1] | |
tokentypes_enc = tokentypes_enc[0: max_seq_length - 1] | |
# [SEP]. | |
enc_ids.append(sep_id) | |
tokentypes_enc.append(0) | |
num_tokens_enc = len(enc_ids) | |
# Padding. | |
padding_length = max_seq_length - len(enc_ids) | |
if padding_length > 0: | |
enc_ids.extend([pad_id] * padding_length) | |
tokentypes_enc.extend([pad_id] * padding_length) | |
pad_mask = ([1] * num_tokens_enc) + ([0] * padding_length) | |
pad_mask = np.array(pad_mask, dtype=np.int64) | |
return enc_ids, tokentypes_enc, pad_mask | |
def build_sample(row_id, context_ids, context_types, context_pad_mask): | |
"""Convert to numpy and return a sample consumed by the batch producer.""" | |
context_ids = np.array(context_ids, dtype=np.int64) | |
context_types = np.array(context_types, dtype=np.int64) | |
context_mask = make_attention_mask(context_ids, context_ids) | |
sample = ({ | |
'row_id': row_id, | |
'context': context_ids, | |
'context_mask': context_mask, | |
'context_types': context_types, | |
'context_pad_mask': context_pad_mask | |
}) | |
return sample | |
class OpenRetrievalEvidenceDataset(ABC, Dataset): | |
"""Open Retrieval Evidence dataset class.""" | |
def __init__(self, task_name, dataset_name, datapath, tokenizer, | |
max_seq_length): | |
# Store inputs. | |
self.task_name = task_name | |
self.dataset_name = dataset_name | |
self.tokenizer = tokenizer | |
self.max_seq_length = max_seq_length | |
print_rank_0(' > building {} dataset for {}:'.format(self.task_name, | |
self.dataset_name)) | |
# Process the files. | |
print_rank_0(datapath) | |
self.samples, self.id2text = self.process_samples_from_single_path( | |
datapath) | |
args = get_args() | |
if args.sample_rate < 1: # subsample | |
k = int(len(self.samples) * args.sample_rate) | |
self.samples = random.sample(self.samples, k) | |
print_rank_0(' >> total number of samples: {}'.format( | |
len(self.samples))) | |
def __len__(self): | |
return len(self.samples) | |
def __getitem__(self, idx): | |
row = self.samples[idx] | |
context_ids, context_types, context_pad_mask = \ | |
build_tokens_types_paddings_from_text(row, self.tokenizer, | |
self.max_seq_length) | |
sample = build_sample(row['doc_id'], | |
context_ids, | |
context_types, | |
context_pad_mask) | |
return sample | |
def process_samples_from_single_path(filename): | |
print_rank_0(' > Processing {} ...'.format(filename)) | |
total = 0 | |
rows = [] | |
id2text = {} | |
with open(filename) as tsvfile: | |
reader = csv.reader(tsvfile, delimiter='\t') | |
next(reader, None) # skip the headers | |
for row in reader: | |
# file format: doc_id, doc_text, title | |
doc_id = int(row[0]) | |
text = row[1] | |
title = row[2] | |
rows.append({'doc_id': doc_id, | |
'text': text, | |
'title': title}) | |
assert doc_id not in id2text | |
id2text[doc_id] = (text, title) | |
total += 1 | |
if total % 100000 == 0: | |
print_rank_0(' > processed {} rows so far ...'.format( | |
total)) | |
print_rank_0(' >> processed {} samples.'.format(len(rows))) | |
return rows, id2text | |