peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/data
/realm_dataset_utils.py
import os | |
import time | |
import numpy as np | |
import torch | |
from megatron import print_rank_0 | |
from megatron.core import mpu, tensor_parallel | |
from megatron.data.dataset_utils import create_masked_lm_predictions, pad_and_convert_to_numpy | |
from megatron import get_args, get_tokenizer, print_rank_0 | |
from deepspeed.accelerator import get_accelerator | |
def get_one_epoch_dataloader(dataset, micro_batch_size=None): | |
"""Specifically one epoch to be used in an indexing job.""" | |
args = get_args() | |
world_size = mpu.get_data_parallel_world_size() | |
rank = mpu.get_data_parallel_rank() | |
if micro_batch_size is None: | |
micro_batch_size = args.micro_batch_size | |
global_batch_size = micro_batch_size * world_size | |
num_workers = args.num_workers | |
sampler = torch.utils.data.SequentialSampler(dataset) | |
# importantly, drop_last must be False to get all the data. | |
assert False, 'DistributedBatchSampler deprecated, change the implementation' | |
from megatron.data.samplers import DistributedBatchSampler | |
batch_sampler = DistributedBatchSampler(sampler, | |
batch_size=global_batch_size, | |
drop_last=False, | |
rank=rank, | |
world_size=world_size) | |
return torch.utils.data.DataLoader(dataset, | |
batch_sampler=batch_sampler, | |
num_workers=num_workers, | |
pin_memory=True) | |
def get_ict_batch(data_iterator): | |
# Items and their type. | |
keys = ['query_tokens', 'query_pad_mask', | |
'block_tokens', 'block_pad_mask', 'block_data'] | |
datatype = torch.int64 | |
# Broadcast data. | |
if data_iterator is None: | |
data = None | |
else: | |
data = next(data_iterator) | |
data_b = tensor_parallel.broadcast_data(keys, data, datatype) | |
# Unpack. | |
query_tokens = data_b['query_tokens'].long() | |
query_pad_mask = data_b['query_pad_mask'].long() | |
block_tokens = data_b['block_tokens'].long() | |
block_pad_mask = data_b['block_pad_mask'].long() | |
block_indices = data_b['block_data'].long() | |
return query_tokens, query_pad_mask,\ | |
block_tokens, block_pad_mask, block_indices | |
def join_str_list(str_list): | |
"""Join a list of strings, handling spaces appropriately""" | |
result = "" | |
for s in str_list: | |
if s.startswith("##"): | |
result += s[2:] | |
else: | |
result += " " + s | |
return result | |
class BlockSampleData(object): | |
"""A struct for fully describing a fixed-size block of data as used in REALM | |
:param start_idx: for first sentence of the block | |
:param end_idx: for last sentence of the block (may be partially truncated in sample construction) | |
:param doc_idx: the index of the document from which the block comes in the original indexed dataset | |
:param block_idx: a unique integer identifier given to every block. | |
""" | |
def __init__(self, start_idx, end_idx, doc_idx, block_idx): | |
self.start_idx = start_idx | |
self.end_idx = end_idx | |
self.doc_idx = doc_idx | |
self.block_idx = block_idx | |
def as_array(self): | |
return np.array([self.start_idx, self.end_idx, self.doc_idx, self.block_idx]).astype(np.int64) | |
def as_tuple(self): | |
return self.start_idx, self.end_idx, self.doc_idx, self.block_idx | |
class BlockSamplesMapping(object): | |
def __init__(self, mapping_array): | |
# make sure that the array is compatible with BlockSampleData | |
assert mapping_array.shape[1] == 4 | |
self.mapping_array = mapping_array | |
def __len__(self): | |
return self.mapping_array.shape[0] | |
def __getitem__(self, idx): | |
"""Get the data associated with an indexed sample.""" | |
sample_data = BlockSampleData(*self.mapping_array[idx]) | |
return sample_data | |
def get_block_samples_mapping(block_dataset, title_dataset, data_prefix, num_epochs, | |
max_num_samples, max_seq_length, seed, name, use_one_sent_docs=False): | |
"""Get samples mapping for a dataset over fixed size blocks. This function also requires | |
a dataset of the titles for the source documents since their lengths must be taken into account. | |
:return: samples_mapping (BlockSamplesMapping) | |
""" | |
if not num_epochs: | |
if not max_num_samples: | |
raise ValueError("Need to specify either max_num_samples " | |
"or num_epochs") | |
num_epochs = np.iinfo(np.int32).max - 1 | |
if not max_num_samples: | |
max_num_samples = np.iinfo(np.int64).max - 1 | |
# Filename of the index mapping | |
indexmap_filename = data_prefix | |
indexmap_filename += '_{}_indexmap'.format(name) | |
if num_epochs != (np.iinfo(np.int32).max - 1): | |
indexmap_filename += '_{}ep'.format(num_epochs) | |
if max_num_samples != (np.iinfo(np.int64).max - 1): | |
indexmap_filename += '_{}mns'.format(max_num_samples) | |
indexmap_filename += '_{}msl'.format(max_seq_length) | |
indexmap_filename += '_{}s'.format(seed) | |
if use_one_sent_docs: | |
indexmap_filename += '_1sentok' | |
indexmap_filename += '.npy' | |
# Build the indexed mapping if not exist. | |
if mpu.get_data_parallel_rank() == 0 and \ | |
not os.path.isfile(indexmap_filename): | |
print(' > WARNING: could not find index map file {}, building ' | |
'the indices on rank 0 ...'.format(indexmap_filename)) | |
# Make sure the types match the helpers input types. | |
assert block_dataset.doc_idx.dtype == np.int64 | |
assert block_dataset.sizes.dtype == np.int32 | |
# Build samples mapping | |
verbose = torch.distributed.get_rank() == 0 | |
start_time = time.time() | |
print_rank_0(' > building samples index mapping for {} ...'.format( | |
name)) | |
from megatron.data import helpers | |
mapping_array = helpers.build_blocks_mapping( | |
block_dataset.doc_idx, | |
block_dataset.sizes, | |
title_dataset.sizes, | |
num_epochs, | |
max_num_samples, | |
max_seq_length - 3, # account for added tokens | |
seed, | |
verbose, | |
use_one_sent_docs) | |
print_rank_0(' > done building samples index mapping') | |
np.save(indexmap_filename, mapping_array, allow_pickle=True) | |
print_rank_0(' > saved the index mapping in {}'.format( | |
indexmap_filename)) | |
# Make sure all the ranks have built the mapping | |
print_rank_0(' > elapsed time to build and save samples mapping ' | |
'(seconds): {:4f}'.format( | |
time.time() - start_time)) | |
# This should be a barrier but nccl barrier assumes | |
# device_index=rank which is not the case for model | |
# parallel case | |
counts = get_accelerator().LongTensor([1]) | |
torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) | |
assert counts[0].item() == torch.distributed.get_world_size( | |
group=mpu.get_data_parallel_group()) | |
# Load indexed dataset. | |
print_rank_0(' > loading indexed mapping from {}'.format( | |
indexmap_filename)) | |
start_time = time.time() | |
mapping_array = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r') | |
samples_mapping = BlockSamplesMapping(mapping_array) | |
print_rank_0(' loaded indexed file in {:3.3f} seconds'.format( | |
time.time() - start_time)) | |
print_rank_0(' total number of samples: {}'.format( | |
mapping_array.shape[0])) | |
return samples_mapping | |