peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/data
/t5_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""T5 Style dataset.""" | |
import collections | |
import numpy as np | |
import torch | |
from megatron import get_tokenizer | |
from megatron.data.dataset_utils import ( | |
create_masked_lm_predictions, | |
get_samples_mapping | |
) | |
class T5Dataset(torch.utils.data.Dataset): | |
def __init__(self, name, indexed_dataset, data_prefix, | |
num_epochs, max_num_samples, masked_lm_prob, | |
max_seq_length, max_seq_length_dec, | |
short_seq_prob, seed): | |
# Params to store. | |
self.name = name | |
self.seed = seed | |
self.masked_lm_prob = masked_lm_prob | |
self.max_seq_length = max_seq_length | |
self.max_seq_length_dec = max_seq_length_dec | |
# Dataset. | |
self.indexed_dataset = indexed_dataset | |
# Build the samples mapping. | |
self.samples_mapping = get_samples_mapping(self.indexed_dataset, | |
data_prefix, | |
num_epochs, | |
max_num_samples, | |
self.max_seq_length - 2, # account for added tokens | |
short_seq_prob, | |
self.seed, | |
self.name, | |
False) | |
# Vocab stuff. | |
tokenizer = get_tokenizer() | |
self.vocab_id_list = list(tokenizer.inv_vocab.keys()) | |
self.vocab_id_to_token_dict = tokenizer.inv_vocab | |
self.cls_id = tokenizer.cls | |
self.sep_id = tokenizer.sep | |
self.mask_id = tokenizer.mask | |
self.pad_id = tokenizer.pad | |
self.bos_id = tokenizer.bos_token_id | |
self.eos_id = tokenizer.eos_token_id | |
self.sentinel_tokens = tokenizer.additional_special_tokens_ids | |
assert len(self.sentinel_tokens) > 0, "Provide the argument --vocab-extra-ids 100 to the script" | |
def __len__(self): | |
return self.samples_mapping.shape[0] | |
def __getitem__(self, idx): | |
start_index, end_index, seq_length = self.samples_mapping[idx] | |
sample = [] | |
for index in range(start_index, end_index): | |
sample.append(self.indexed_dataset[index]) | |
# Note that this rng state should be numpy and not python since | |
# python randint is inclusive whereas the numpy one is exclusive. | |
np_rng = np.random.RandomState(seed=(self.seed + idx)) | |
return build_training_sample(sample, seq_length, | |
self.max_seq_length, # needed for padding | |
self.max_seq_length_dec, | |
self.vocab_id_list, | |
self.vocab_id_to_token_dict, | |
self.cls_id, self.sep_id, | |
self.mask_id, self.pad_id, | |
self.masked_lm_prob, np_rng, | |
self.bos_id, self.eos_id, | |
self.sentinel_tokens) | |
def build_training_sample(sample, target_seq_length, | |
max_seq_length, max_seq_length_dec, | |
vocab_id_list, vocab_id_to_token_dict, | |
cls_id, sep_id, mask_id, pad_id, | |
masked_lm_prob, np_rng, bos_id=None, | |
eos_id=None, sentinel_tokens=None): | |
"""Build training sample. | |
Arguments: | |
sample: A list of sentences in which each sentence is a list token ids. | |
target_seq_length: Desired sequence length. | |
max_seq_length: Maximum length of the sequence. All values are padded to | |
this length. | |
vocab_id_list: List of vocabulary ids. Used to pick a random id. | |
vocab_id_to_token_dict: A dictionary from vocab ids to text tokens. | |
cls_id: Start of example id. | |
sep_id: Separator id. | |
mask_id: Mask token id. | |
pad_id: Padding token id. | |
masked_lm_prob: Probability to mask tokens. | |
np_rng: Random number genenrator. Note that this rng state should be | |
numpy and not python since python randint is inclusive for | |
the opper bound whereas the numpy one is exclusive. | |
bos_id: start of decoder example id | |
eos_id: end of generation id | |
sentinel_tokens: unique value to be substituted for every replaced span | |
""" | |
assert target_seq_length <= max_seq_length | |
# flatten sentences into one list | |
tokens = [token for sentence in sample for token in sentence] | |
# Truncate to `target_sequence_length`. | |
max_num_tokens = target_seq_length | |
truncated = len(tokens) > max_num_tokens | |
tokens = tokens[:max_num_tokens] | |
# Masking. | |
max_predictions_per_seq = masked_lm_prob * max_num_tokens | |
(tokens, masked_positions, masked_labels, _, masked_spans) = create_masked_lm_predictions( | |
tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob, | |
cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng, | |
max_ngrams=10, geometric_dist=True, masking_style="t5") | |
# Padding. | |
tokens_enc, tokens_dec_in, labels, enc_mask, \ | |
dec_mask, enc_dec_mask, loss_mask \ | |
= pad_and_convert_to_numpy(tokens, masked_positions, | |
masked_labels, pad_id, max_seq_length, | |
max_seq_length_dec, masked_spans, | |
bos_id, eos_id, sentinel_tokens) | |
train_sample = { | |
'text_enc': tokens_enc, | |
'text_dec': tokens_dec_in, | |
'labels': labels, | |
'loss_mask': loss_mask, | |
'truncated': int(truncated), | |
'enc_mask': enc_mask, | |
'dec_mask': dec_mask, | |
'enc_dec_mask': enc_dec_mask, | |
} | |
return train_sample | |
def pad_and_convert_to_numpy(tokens, masked_positions, | |
masked_labels, pad_id, | |
max_seq_length, max_seq_length_dec, | |
masked_spans=None, bos_id=None, | |
eos_id=None, sentinel_tokens=None): | |
"""Pad sequences and convert them to numpy.""" | |
sentinel_tokens = collections.deque(sentinel_tokens) | |
t5_input = [] | |
(t5_decoder_in, t5_decoder_out) = ([bos_id], []) | |
(start_index, end_index) = (0, None) | |
for span in masked_spans: | |
flag = sentinel_tokens.popleft() | |
# Append the same tokens in decoder input and output | |
t5_decoder_in.append(flag) | |
t5_decoder_in.extend(span.label) | |
t5_decoder_out.append(flag) | |
t5_decoder_out.extend(span.label) | |
end_index = span.index[0] | |
t5_input.extend(tokens[start_index: end_index]) | |
t5_input.append(flag) | |
# the next start index is the token after the last span token | |
start_index = span.index[-1] + 1 | |
# Add <eos> token to the t5_decoder_out | |
t5_decoder_out.append(eos_id) | |
# Add the remaining tokens to the t5 input | |
t5_input.extend(tokens[start_index:]) | |
# assert (len(t5_input) - len(masked_spans)) + \ | |
# (len(t5_decoder_in) - (len(masked_spans) + 1)) == len(tokens) | |
# Some checks. | |
# Encoder-side padding mask. | |
num_tokens = len(t5_input) | |
padding_length = max_seq_length - num_tokens | |
assert padding_length >= 0 | |
assert len(masked_positions) == len(masked_labels) | |
# Tokens.. | |
filler = [pad_id] * padding_length | |
tokens_enc = np.array(t5_input + filler, dtype=np.int64) | |
# Decoder-side padding mask. | |
num_tokens_dec = len(t5_decoder_in) | |
padding_length_dec = max_seq_length_dec - num_tokens_dec | |
assert padding_length_dec >= 0 | |
filler_dec = [pad_id] * padding_length_dec | |
tokens_dec_in = np.array(t5_decoder_in + filler_dec, dtype=np.int64) | |
# Create attention masks | |
enc_mask = make_attention_mask(tokens_enc, tokens_enc) | |
enc_dec_mask = make_attention_mask(tokens_dec_in, tokens_enc) | |
dec_mask = make_attention_mask(tokens_dec_in, tokens_dec_in) | |
dec_mask = dec_mask * make_history_mask(tokens_dec_in) | |
# Labels mask. | |
labels = t5_decoder_out + ([-1] * padding_length_dec) | |
labels = np.array(labels, dtype=np.int64) | |
# Loss mask | |
loss_mask = ([1] * num_tokens_dec) + ([0] * padding_length_dec) | |
loss_mask = np.array(loss_mask, dtype=np.int64) | |
return tokens_enc, tokens_dec_in, labels, enc_mask, \ | |
dec_mask, enc_dec_mask, loss_mask | |
def make_attention_mask(source_block, target_block): | |
""" | |
Returns a 2-dimensional (2-D) attention mask | |
:param source_block: 1-D array | |
:param target_block: 1-D array | |
""" | |
mask = (target_block[None, :] >= 1) * (source_block[:, None] >= 1) | |
mask = mask.astype(np.int64) | |
# (source_length, target_length) | |
return mask | |
def make_attention_mask_3d(source_block, target_block): | |
""" | |
Returns a 3-dimensional (3-D) attention mask | |
:param source_block: 1-D array | |
:param target_block: 1-D array | |
""" | |
mask = (target_block[:, None, :] >= 1) * (source_block[:, :, None] >= 1) | |
# (batch, source_length, target_length) | |
# mask = mask.astype(np.int64) | |
return mask | |
def make_history_mask(block): | |
length = block.shape[0] | |
arange = np.arange(length) | |
history_mask = (arange[None, ] <= arange[:, None]) | |
history_mask = history_mask.astype(np.int64) | |
return history_mask | |
def make_history_mask_3d(block): | |
batch, length = block.shape | |
arange = torch.arange(length, device=block.device) | |
history_mask = (arange[None, ] <= arange[:, None])[None, ] | |
history_mask = history_mask.expand(batch, length, length) | |
return history_mask | |