peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/data
/vit_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
import os | |
import random | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from torchvision import datasets | |
from megatron import get_args | |
from megatron.data.image_folder import ImageFolder | |
from megatron.data.autoaugment import ImageNetPolicy | |
from megatron.data.data_samplers import RandomSeedDataset | |
from PIL import Image, ImageFilter, ImageOps | |
class GaussianBlur(object): | |
""" | |
Apply Gaussian Blur to the PIL image. | |
""" | |
def __init__(self, p=0.5, radius_min=0.1, radius_max=2.): | |
self.prob = p | |
self.radius_min = radius_min | |
self.radius_max = radius_max | |
def __call__(self, img): | |
do_it = random.random() <= self.prob | |
if not do_it: | |
return img | |
return img.filter( | |
ImageFilter.GaussianBlur( | |
radius=random.uniform(self.radius_min, self.radius_max) | |
) | |
) | |
class Solarization(object): | |
""" | |
Apply Solarization to the PIL image. | |
""" | |
def __init__(self, p): | |
self.p = p | |
def __call__(self, img): | |
if random.random() < self.p: | |
return ImageOps.solarize(img) | |
else: | |
return img | |
class ClassificationTransform(): | |
def __init__(self, image_size, train=True): | |
args = get_args() | |
assert args.fp16 or args.bf16 | |
self.data_type = torch.half if args.fp16 else torch.bfloat16 | |
if train: | |
self.transform = T.Compose([ | |
T.RandomResizedCrop(image_size), | |
T.RandomHorizontalFlip(), | |
T.ColorJitter(0.4, 0.4, 0.4, 0.1), | |
ImageNetPolicy(), | |
T.ToTensor(), | |
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
T.ConvertImageDtype(self.data_type) | |
]) | |
else: | |
self.transform = T.Compose([ | |
T.Resize(image_size), | |
T.CenterCrop(image_size), | |
T.ToTensor(), | |
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
T.ConvertImageDtype(self.data_type) | |
]) | |
def __call__(self, input): | |
output = self.transform(input) | |
return output | |
class InpaintingTransform(): | |
def __init__(self, image_size, train=True): | |
args = get_args() | |
self.mask_factor = args.mask_factor | |
self.mask_type = args.mask_type | |
self.image_size = image_size | |
self.patch_size = args.patch_dim | |
self.mask_size = int(self.mask_factor*(image_size[0]/self.patch_size)*(image_size[1]/self.patch_size)) | |
self.train = train | |
assert args.fp16 or args.bf16 | |
self.data_type = torch.half if args.fp16 else torch.bfloat16 | |
if self.train: | |
self.transform = T.Compose([ | |
T.RandomResizedCrop(self.image_size), | |
T.RandomHorizontalFlip(), | |
T.ColorJitter(0.4, 0.4, 0.4, 0.1), | |
ImageNetPolicy(), | |
T.ToTensor(), | |
T.ConvertImageDtype(self.data_type) | |
]) | |
else: | |
self.transform = T.Compose([ | |
T.Resize(self.image_size, interpolation=2), | |
T.CenterCrop(self.image_size), | |
T.ToTensor(), | |
T.ConvertImageDtype(self.data_type) | |
]) | |
def gen_mask(self, image_size, mask_size, mask_type, patch_size): | |
# output: mask as a list with indices for missing patches | |
action_list = [[0, 1], [0, -1], [1, 0], [-1, 0]] | |
assert image_size[0] == image_size[1] | |
img_size_patch = image_size[0] // patch_size | |
# drop masked patches | |
mask = torch.zeros((image_size[0], image_size[1]), dtype=torch.float) | |
if mask_type == 'random': | |
x = torch.randint(0, img_size_patch, ()) | |
y = torch.randint(0, img_size_patch, ()) | |
for i in range(mask_size): | |
r = torch.randint(0, len(action_list), ()) | |
x = torch.clamp(x + action_list[r][0], min=0, max=img_size_patch - 1) | |
y = torch.clamp(y + action_list[r][1], min=0, max=img_size_patch - 1) | |
x_offset = x * patch_size | |
y_offset = y * patch_size | |
mask[x_offset:x_offset+patch_size, y_offset:y_offset+patch_size] = 1 | |
else: | |
assert mask_type == 'row' | |
count = 0 | |
for x in reversed(range(img_size_patch)): | |
for y in reversed(range(img_size_patch)): | |
if (count < mask_size): | |
count += 1 | |
x_offset = x * patch_size | |
y_offset = y * patch_size | |
mask[x_offset:x_offset+patch_size, y_offset:y_offset+patch_size] = 1 | |
return mask | |
def __call__(self, input): | |
trans_input = self.transform(input) | |
mask = self.gen_mask(self.image_size, self.mask_size, | |
self.mask_type, self.patch_size) | |
mask = mask.unsqueeze(dim=0) | |
return trans_input, mask | |
class DinoTransform(object): | |
def __init__(self, image_size, train=True): | |
args = get_args() | |
self.data_type = torch.half if args.fp16 else torch.bfloat16 | |
flip_and_color_jitter = T.Compose([ | |
T.RandomHorizontalFlip(p=0.5), | |
T.RandomApply( | |
[T.ColorJitter(brightness=0.4, contrast=0.4, | |
saturation=0.2, hue=0.1)], | |
p=0.8 | |
), | |
T.RandomGrayscale(p=0.2), | |
]) | |
if args.fp16 or args.bf16: | |
normalize = T.Compose([ | |
T.ToTensor(), | |
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
T.ConvertImageDtype(self.data_type) | |
]) | |
else: | |
normalize = T.Compose([ | |
T.ToTensor(), | |
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
]) | |
# first global crop | |
scale_const = 0.4 | |
self.global_transform1 = T.Compose([ | |
T.RandomResizedCrop(image_size, | |
scale=(scale_const, 1), | |
interpolation=Image.BICUBIC), | |
flip_and_color_jitter, | |
GaussianBlur(1.0), | |
normalize | |
]) | |
# second global crop | |
self.global_transform2 = T.Compose([ | |
T.RandomResizedCrop(image_size, | |
scale=(scale_const, 1), | |
interpolation=Image.BICUBIC), | |
flip_and_color_jitter, | |
GaussianBlur(0.1), | |
Solarization(0.2), | |
normalize | |
]) | |
# transformation for the local small crops | |
self.local_crops_number = args.dino_local_crops_number | |
self.local_transform = T.Compose([ | |
T.RandomResizedCrop(args.dino_local_img_size, | |
scale=(0.05, scale_const), | |
interpolation=Image.BICUBIC), | |
flip_and_color_jitter, | |
GaussianBlur(p=0.5), | |
normalize | |
]) | |
def __call__(self, image): | |
crops = [] | |
crops.append(self.global_transform1(image)) | |
crops.append(self.global_transform2(image)) | |
for _ in range(self.local_crops_number): | |
crops.append(self.local_transform(image)) | |
return crops | |
def build_train_valid_datasets(data_path, image_size=224): | |
args = get_args() | |
if args.vision_pretraining_type == 'classify': | |
train_transform = ClassificationTransform(image_size) | |
val_transform = ClassificationTransform(image_size, train=False) | |
elif args.vision_pretraining_type == 'inpaint': | |
train_transform = InpaintingTransform(image_size, train=False) | |
val_transform = InpaintingTransform(image_size, train=False) | |
elif args.vision_pretraining_type == 'dino': | |
train_transform = DinoTransform(image_size, train=True) | |
val_transform = ClassificationTransform(image_size, train=False) | |
else: | |
raise Exception('{} vit pretraining type is not supported.'.format( | |
args.vit_pretraining_type)) | |
# training dataset | |
train_data_path = data_path[0] if len(data_path) <= 2 else data_path[2] | |
train_data = ImageFolder( | |
root=train_data_path, | |
transform=train_transform, | |
classes_fraction=args.classes_fraction, | |
data_per_class_fraction=args.data_per_class_fraction | |
) | |
train_data = RandomSeedDataset(train_data) | |
# validation dataset | |
val_data_path = data_path[1] | |
val_data = ImageFolder( | |
root=val_data_path, | |
transform=val_transform | |
) | |
val_data = RandomSeedDataset(val_data) | |
return train_data, val_data | |