peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/model
/bert_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""BERT model.""" | |
import torch | |
from megatron import get_args | |
from megatron.core import tensor_parallel | |
from megatron.model.enums import AttnMaskType | |
from megatron.model.language_model import parallel_lm_logits | |
from megatron.model.language_model import get_language_model | |
from megatron.model import LayerNorm | |
from megatron.model.utils import openai_gelu, erf_gelu | |
from megatron.model.utils import get_linear_layer | |
from megatron.model.utils import init_method_normal | |
from megatron.model.utils import scaled_init_method_normal | |
from .module import MegatronModule | |
def bert_extended_attention_mask(attention_mask): | |
# We create a 3D attention mask from a 2D tensor mask. | |
# [b, 1, s] | |
attention_mask_b1s = attention_mask.unsqueeze(1) | |
# [b, s, 1] | |
attention_mask_bs1 = attention_mask.unsqueeze(2) | |
# [b, s, s] | |
attention_mask_bss = attention_mask_b1s * attention_mask_bs1 | |
# [b, 1, s, s] | |
extended_attention_mask = attention_mask_bss.unsqueeze(1) | |
# Convert attention mask to binary: | |
extended_attention_mask = (extended_attention_mask < 0.5) | |
return extended_attention_mask | |
def bert_position_ids(token_ids): | |
# Create position ids | |
seq_length = token_ids.size(1) | |
position_ids = torch.arange(seq_length, dtype=torch.long, | |
device=token_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(token_ids) | |
return position_ids | |
class BertLMHead(MegatronModule): | |
"""Masked LM head for Bert | |
Arguments: | |
config: TransformerConfig object | |
mpu_vocab_size: model parallel size of vocabulary. | |
hidden_size: hidden size | |
parallel_output: whether output logits being distributed or not. | |
""" | |
def __init__(self, mpu_vocab_size, hidden_size, config, parallel_output): | |
super().__init__(config=config) | |
args = get_args() | |
self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size)) | |
tensor_parallel.set_tensor_model_parallel_attributes(self.bias, True, 0, 1) | |
self.parallel_output = parallel_output | |
self.dense = get_linear_layer(hidden_size, hidden_size, config.init_method, gather_params_on_init=args.zero_stage == 3) | |
setattr(self.dense.weight, 'sequence_parallel', config.sequence_parallel) | |
setattr(self.dense.bias, 'sequence_parallel', config.sequence_parallel) | |
self.layernorm = LayerNorm(hidden_size, | |
eps=config.layernorm_epsilon, | |
sequence_parallel=config.sequence_parallel) | |
self.gelu = torch.nn.functional.gelu | |
if args.openai_gelu: | |
self.gelu = openai_gelu | |
elif args.onnx_safe: | |
self.gelu = erf_gelu | |
def forward(self, hidden_states, word_embeddings_weight): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.gelu(hidden_states) | |
hidden_states = self.layernorm(hidden_states) | |
output = parallel_lm_logits(hidden_states, | |
word_embeddings_weight, | |
self.parallel_output, | |
bias=self.bias) | |
return output | |
def post_language_model_processing(lm_output, pooled_output, | |
lm_head, binary_head, | |
lm_labels, | |
logit_weights, | |
fp16_lm_cross_entropy): | |
# Output. | |
lm_logits = lm_head( | |
lm_output, logit_weights) | |
binary_logits = None | |
if binary_head is not None: | |
binary_logits = binary_head(pooled_output) | |
if lm_labels is None: | |
# [s b h] => [b s h] | |
return lm_logits.transpose(0,1).contiguous(), binary_logits | |
else: | |
# [b s] => [s b] | |
lm_labels = lm_labels.transpose(0,1).contiguous() | |
# lm_logits : [s, b, h] and lm_labels: [s, b] | |
if fp16_lm_cross_entropy: | |
assert lm_logits.dtype == torch.half | |
lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits, lm_labels) | |
else: | |
lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits.float(), | |
lm_labels) | |
# [s, b] => [b s] | |
lm_loss = lm_loss.transpose(0,1).contiguous() | |
return lm_loss, binary_logits | |
class BertModel(MegatronModule): | |
"""Bert Language model.""" | |
def __init__(self, | |
config, | |
num_tokentypes=2, | |
add_binary_head=True, | |
parallel_output=True, | |
pre_process=True, | |
post_process=True, | |
return_moe_loss=False): | |
super().__init__(config=config) | |
args = get_args() | |
# TODO this option is not yet implemented in BERT | |
assert args.untie_embeddings_and_output_weights is False | |
self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy | |
self.add_binary_head = add_binary_head | |
self.parallel_output = parallel_output | |
self.pre_process = pre_process | |
self.post_process = post_process | |
self.return_moe_loss = return_moe_loss | |
self.return_embeddings = args.output_bert_embeddings | |
if self.return_embeddings: | |
assert self.post_process and self.add_binary_head | |
self.language_model, self._language_model_key = get_language_model( | |
config=config, | |
num_tokentypes=num_tokentypes, | |
add_pooler=self.add_binary_head, | |
encoder_attn_mask_type=AttnMaskType.padding, | |
pre_process=self.pre_process, | |
post_process=self.post_process, | |
num_experts=args.num_experts, | |
) | |
self.initialize_word_embeddings() | |
if self.post_process: | |
self.lm_head = BertLMHead(self.shared_embedding_or_output_weight().size(0), config.hidden_size, | |
config, parallel_output) | |
self._lm_head_key = 'lm_head' | |
self.binary_head = None | |
if self.add_binary_head: | |
self.binary_head = get_linear_layer(config.hidden_size, 2, | |
config.init_method, | |
args.zero_stage == 3) | |
self._binary_head_key = 'binary_head' | |
def set_input_tensor(self, input_tensor): | |
"""See megatron.model.transformer.set_input_tensor()""" | |
self.language_model.set_input_tensor(input_tensor) | |
def forward(self, bert_model_input, attention_mask, | |
tokentype_ids=None, lm_labels=None): | |
extended_attention_mask = bert_extended_attention_mask(attention_mask) | |
input_ids = bert_model_input | |
position_ids = bert_position_ids(input_ids) | |
lm_output = self.language_model( | |
input_ids, | |
position_ids, | |
extended_attention_mask, | |
tokentype_ids=tokentype_ids | |
) | |
if self.post_process and self.add_binary_head: | |
lm_output, pooled_output, moe_losses = lm_output | |
# Return pooled output (e.g., when computing Bert embeddings). | |
if self.return_embeddings: | |
# Sum attention mask. | |
embeddings = torch.transpose(lm_output, 0, 1) | |
masks = torch.sum(attention_mask, dim=1) | |
# Collect masked embeddings. | |
output = torch.zeros( | |
size=(embeddings.shape[0], embeddings.shape[2]), | |
dtype=torch.float32, | |
device=torch.cuda.current_device()) | |
for i, (embedding, mask) in enumerate(zip(embeddings, masks)): | |
output[i, :] = torch.mean(embedding[1: mask - 1], dim=0) | |
return output | |
else: | |
pooled_output = None | |
if self.post_process: | |
if not self.add_binary_head: | |
lm_output, moe_losses = lm_output | |
lm_output = post_language_model_processing(lm_output, pooled_output, | |
self.lm_head, self.binary_head, | |
lm_labels, | |
self.shared_embedding_or_output_weight(), | |
self.fp16_lm_cross_entropy) | |
return *lm_output, moe_losses if self.return_moe_loss else lm_output | |
else: | |
return lm_output | |
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): | |
"""For easy load when model is combined with other heads, | |
add an extra key.""" | |
state_dict_ = {} | |
state_dict_[self._language_model_key] \ | |
= self.language_model.state_dict_for_save_checkpoint(prefix=prefix, | |
keep_vars=keep_vars) | |
if self.post_process: | |
state_dict_[self._lm_head_key] \ | |
= self.lm_head.state_dict_for_save_checkpoint(prefix=prefix, | |
keep_vars=keep_vars) | |
if self.post_process and self.add_binary_head: | |
state_dict_[self._binary_head_key] \ | |
= self.binary_head.state_dict(prefix=prefix, keep_vars=keep_vars) | |
# Save word_embeddings. | |
if self.post_process and not self.pre_process: | |
state_dict_[self._word_embeddings_for_head_key] \ | |
= self.word_embeddings.state_dict(prefix=prefix, keep_vars=keep_vars) | |
return state_dict_ | |
def load_state_dict(self, state_dict, strict=True): | |
"""Customized load.""" | |
self.language_model.load_state_dict( | |
state_dict[self._language_model_key], strict=strict) | |
if self.post_process: | |
self.lm_head.load_state_dict( | |
state_dict[self._lm_head_key], strict=strict) | |
if self.post_process and self.add_binary_head: | |
self.binary_head.load_state_dict( | |
state_dict[self._binary_head_key], strict=strict) | |
# Load word_embeddings. | |
if self.post_process and not self.pre_process: | |
self.word_embeddings.load_state_dict( | |
state_dict[self._word_embeddings_for_head_key], strict=strict) | |