applied-ai-018's picture
Add files using upload-large-folder tool
4573dea verified
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""This code is copied fron NVIDIA apex:
https://github.com/NVIDIA/apex
with some changes. """
import numbers
import torch
from torch.nn.parameter import Parameter
from torch.nn import init
import importlib
from torch.nn import functional as F
import inspect
from megatron.core.utils import make_viewless_tensor
from megatron import get_args
from deepspeed.accelerator.real_accelerator import get_accelerator
try:
from apex.contrib.layer_norm.layer_norm import FastLayerNormFN
HAVE_PERSIST_LAYER_NORM = True
except:
HAVE_PERSIST_LAYER_NORM = False
try:
from apex.normalization.fused_layer_norm import FusedLayerNormAffineFunction
except ModuleNotFoundError:
pass
global fused_layer_norm_cuda
fused_layer_norm_cuda = None
class MixedFusedLayerNorm(torch.nn.Module):
def __init__(self, normalized_shape, eps=1e-5,
no_persist_layer_norm=True,
sequence_parallel=False,
apply_layernorm_1p=False,
mem_efficient_ln=True):
super(MixedFusedLayerNorm, self).__init__()
self.apply_layernorm_1p = apply_layernorm_1p
self.mem_efficient_ln = mem_efficient_ln
if get_accelerator().device_name() == 'cuda':
global fused_layer_norm_cuda
fused_layer_norm_cuda = importlib.import_module("fused_layer_norm_cuda")
# List of hiddens sizes supported in the persistent layer norm kernel
# If the hidden size is not supported, fall back to the non-persistent
# kernel.
persist_ln_hidden_sizes = [1024, 1536, 2048, 2304, 3072, 3840, 4096,
5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480,
24576, 25600, 30720, 32768, 40960, 49152, 65536]
if normalized_shape not in persist_ln_hidden_sizes or \
not HAVE_PERSIST_LAYER_NORM:
no_persist_layer_norm = True
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
self.normalized_shape = torch.Size(normalized_shape)
self.eps = eps
self.weight = Parameter(torch.empty(*normalized_shape,
device=get_accelerator().current_device_name(),
dtype=get_args().params_dtype))
self.bias = Parameter(torch.empty(*normalized_shape,
device=get_accelerator().current_device_name(),
dtype=get_args().params_dtype))
self.reset_parameters()
self.no_persist_layer_norm = no_persist_layer_norm
self.sequence_parallel = sequence_parallel
# set sequence parallelism flag on weight and bias parameters
setattr(self.weight, 'sequence_parallel', self.sequence_parallel)
setattr(self.bias, 'sequence_parallel', self.sequence_parallel)
def reset_parameters(self):
if self.apply_layernorm_1p:
init.zeros_(self.weight)
init.zeros_(self.bias)
else:
init.ones_(self.weight)
init.zeros_(self.bias)
def forward(self, input):
weight = self.weight + 1 if self.apply_layernorm_1p else self.weight
# CPU path is here for unittest sake.
if not input.is_cuda:
if get_accelerator().device_name() == 'cuda':
print("WARNING! The input of FusedLayerNorm should be on the GPU."
"This warning should only be triggered in the FusedLayerNorm unit tests.")
return F.layer_norm(input, self.normalized_shape, weight, self.bias, self.eps)
if self.no_persist_layer_norm:
# Apex does not have versions yet (https://github.com/NVIDIA/apex/pull/1648), so we need to inspect
# the function manually on whether the extra arg introduced in https://github.com/NVIDIA/apex/pull/1715 exists yet
if 'memory_efficient' in inspect.getfullargspec(FusedLayerNormAffineFunction.forward).args:
return FusedLayerNormAffineFunction.apply(input, weight, self.bias, self.normalized_shape, self.eps, self.mem_efficient_ln)
else:
return FusedLayerNormAffineFunction.apply(input, weight, self.bias, self.normalized_shape, self.eps)
else:
output = FastLayerNormFN.apply(input, weight, self.bias, self.eps)
# Apex's fast layer norm function outputs a 'view' tensor (i.e., has
# a populated '_base' field). This will result in schedule.py's
# deallocate_output_tensor() throwing an error, so a viewless tensor is
# created to prevent this.
output = make_viewless_tensor(inp = output,
requires_grad = input.requires_grad,
keep_graph = True)
return output