peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/model
/realm_model.py
import os | |
import torch | |
from megatron import get_args, print_rank_0 | |
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name | |
from megatron.model import BertModel | |
from .module import MegatronModule | |
from megatron.core import mpu | |
from megatron.model.enums import AttnMaskType | |
from megatron.model.utils import get_linear_layer | |
from megatron.model.utils import init_method_normal | |
from megatron.model.language_model import get_language_model | |
from megatron.model.utils import scaled_init_method_normal | |
from megatron.model.bert_model import bert_extended_attention_mask, bert_position_ids | |
from deepspeed.accelerator import get_accelerator | |
def general_ict_model_provider(only_query_model=False, only_block_model=False): | |
"""Build the model.""" | |
args = get_args() | |
assert args.ict_head_size is not None, \ | |
"Need to specify --ict-head-size to provide an ICTBertModel" | |
assert mpu.get_tensor_model_parallel_world_size() == 1 and mpu.get_pipeline_model_parallel_world_size() == 1, \ | |
"Model parallel size > 1 not supported for ICT" | |
print_rank_0('building ICTBertModel...') | |
# simpler to just keep using 2 tokentypes since the LM we initialize with has 2 tokentypes | |
model = ICTBertModel( | |
ict_head_size=args.ict_head_size, | |
num_tokentypes=2, | |
parallel_output=True, | |
only_query_model=only_query_model, | |
only_block_model=only_block_model) | |
return model | |
class ICTBertModel(MegatronModule): | |
"""Bert-based module for Inverse Cloze task.""" | |
def __init__(self, | |
ict_head_size, | |
num_tokentypes=1, | |
parallel_output=True, | |
only_query_model=False, | |
only_block_model=False): | |
super(ICTBertModel, self).__init__() | |
bert_kwargs = dict( | |
ict_head_size=ict_head_size, | |
num_tokentypes=num_tokentypes, | |
parallel_output=parallel_output | |
) | |
assert not (only_block_model and only_query_model) | |
self.use_block_model = not only_query_model | |
self.use_query_model = not only_block_model | |
if self.use_query_model: | |
# this model embeds (pseudo-)queries - Embed_input in the paper | |
self.query_model = IREncoderBertModel(**bert_kwargs) | |
self._query_key = 'question_model' | |
if self.use_block_model: | |
# this model embeds evidence blocks - Embed_doc in the paper | |
self.block_model = IREncoderBertModel(**bert_kwargs) | |
self._block_key = 'context_model' | |
def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask): | |
"""Run a forward pass for each of the models and return the respective embeddings.""" | |
query_logits = self.embed_query(query_tokens, query_attention_mask) | |
block_logits = self.embed_block(block_tokens, block_attention_mask) | |
return query_logits, block_logits | |
def embed_query(self, query_tokens, query_attention_mask): | |
"""Embed a batch of tokens using the query model""" | |
if self.use_query_model: | |
query_types = get_accelerator().LongTensor(*query_tokens.shape).fill_(0) | |
query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types) | |
return query_ict_logits | |
else: | |
raise ValueError("Cannot embed query without query model.") | |
def embed_block(self, block_tokens, block_attention_mask): | |
"""Embed a batch of tokens using the block model""" | |
if self.use_block_model: | |
block_types = get_accelerator().LongTensor(*block_tokens.shape).fill_(0) | |
block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types) | |
return block_ict_logits | |
else: | |
raise ValueError("Cannot embed block without block model.") | |
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): | |
"""Save dict with state dicts of each of the models.""" | |
state_dict_ = {} | |
if self.use_query_model: | |
state_dict_[self._query_key] \ | |
= self.query_model.state_dict_for_save_checkpoint( | |
prefix=prefix, keep_vars=keep_vars) | |
if self.use_block_model: | |
state_dict_[self._block_key] \ | |
= self.block_model.state_dict_for_save_checkpoint( | |
prefix=prefix, keep_vars=keep_vars) | |
return state_dict_ | |
def load_state_dict(self, state_dict, strict=True): | |
"""Load the state dicts of each of the models""" | |
if self.use_query_model: | |
print("Loading ICT query model", flush=True) | |
self.query_model.load_state_dict( | |
state_dict[self._query_key], strict=strict) | |
if self.use_block_model: | |
print("Loading ICT block model", flush=True) | |
self.block_model.load_state_dict( | |
state_dict[self._block_key], strict=strict) | |
def init_state_dict_from_bert(self): | |
"""Initialize the state from a pretrained BERT model on iteration zero of ICT pretraining""" | |
args = get_args() | |
tracker_filename = get_checkpoint_tracker_filename(args.bert_load) | |
if not os.path.isfile(tracker_filename): | |
raise FileNotFoundError("Could not find BERT load for ICT") | |
with open(tracker_filename, 'r') as f: | |
iteration = int(f.read().strip()) | |
assert iteration > 0 | |
checkpoint_name = get_checkpoint_name(args.bert_load, iteration, False) | |
if mpu.get_data_parallel_rank() == 0: | |
print('global rank {} is loading checkpoint {}'.format( | |
torch.distributed.get_rank(), checkpoint_name)) | |
try: | |
state_dict = torch.load(checkpoint_name, map_location='cpu') | |
except BaseException: | |
raise ValueError("Could not load checkpoint") | |
# load the LM state dict into each model | |
model_dict = state_dict['model']['language_model'] | |
self.query_model.language_model.load_state_dict(model_dict) | |
self.block_model.language_model.load_state_dict(model_dict) | |
# give each model the same ict_head to begin with as well | |
query_ict_head_state_dict = self.state_dict_for_save_checkpoint()[self._query_key]['ict_head'] | |
self.block_model.ict_head.load_state_dict(query_ict_head_state_dict) | |
class IREncoderBertModel(MegatronModule): | |
"""BERT-based encoder for queries or blocks used for learned information retrieval.""" | |
def __init__(self, ict_head_size, num_tokentypes=2, parallel_output=True): | |
super(IREncoderBertModel, self).__init__() | |
args = get_args() | |
self.ict_head_size = ict_head_size | |
self.parallel_output = parallel_output | |
init_method = init_method_normal(args.init_method_std) | |
scaled_init_method = scaled_init_method_normal(args.init_method_std, | |
args.num_layers) | |
self.language_model, self._language_model_key = get_language_model( | |
num_tokentypes=num_tokentypes, | |
add_pooler=True, | |
encoder_attn_mask_type=AttnMaskType.padding, | |
init_method=init_method, | |
scaled_init_method=scaled_init_method) | |
self.ict_head = get_linear_layer(args.hidden_size, ict_head_size, init_method, gather_params_on_init=args.zero_stage == 3) | |
self._ict_head_key = 'ict_head' | |
def forward(self, input_ids, attention_mask, tokentype_ids=None): | |
extended_attention_mask = bert_extended_attention_mask( | |
attention_mask, next(self.language_model.parameters()).dtype) | |
position_ids = bert_position_ids(input_ids) | |
lm_output, pooled_output = self.language_model( | |
input_ids, | |
position_ids, | |
extended_attention_mask, | |
tokentype_ids=tokentype_ids) | |
# Output. | |
ict_logits = self.ict_head(pooled_output) | |
return ict_logits, None | |
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): | |
"""For easy load when model is combined with other heads, | |
add an extra key.""" | |
state_dict_ = {} | |
state_dict_[self._language_model_key] \ | |
= self.language_model.state_dict_for_save_checkpoint(prefix=prefix, | |
keep_vars=keep_vars) | |
state_dict_[self._ict_head_key] \ | |
= self.ict_head.state_dict(prefix=prefix, | |
keep_vars=keep_vars) | |
return state_dict_ | |
def load_state_dict(self, state_dict, strict=True): | |
"""Customized load.""" | |
self.language_model.load_state_dict( | |
state_dict[self._language_model_key], strict=strict) | |
self.ict_head.load_state_dict( | |
state_dict[self._ict_head_key], strict=strict) | |