peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/model
/rotary_pos_embedding.py
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. | |
# coding=utf-8 | |
# The following code has been taken from https://github.com/NVIDIA/NeMo/blob/ \ | |
# 782b4e1652aaa43c8be390d9db0dc89544afa080/nemo/collections/nlp/modules/ \ | |
# common/megatron/rotary_pos_embedding.py | |
import importlib.util | |
import torch | |
from torch import einsum, nn | |
__all__ = ['RotaryEmbedding', 'apply_rotary_pos_emb'] | |
try: | |
from habana_frameworks.torch.hpex.kernels import RotaryPosEmbeddingHelperV1 | |
except ImportError: | |
RotaryPosEmbeddingHelperV1 = None | |
# sin, cos tensors cached for all devices | |
cos_cached = None | |
sin_cached = None | |
class RotaryEmbedding(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer('inv_freq', inv_freq) | |
if importlib.util.find_spec('einops') is None: | |
raise RuntimeError("einops is required for Rotary Embedding") | |
def forward(self, max_seq_len, offset=0): | |
seq = torch.arange(max_seq_len, device=self.inv_freq.device) + offset | |
freqs = einsum('i , j -> i j', seq.type_as(self.inv_freq), self.inv_freq) | |
# first part even vector components, second part odd vector components, | |
# 2 * dim in dimension size | |
emb = torch.cat((freqs, freqs), dim=-1) | |
# emb [seq_length, .., dim] | |
from einops import rearrange | |
return rearrange(emb, 'n d -> n 1 1 d') | |
def _rotate_half(x): | |
""" | |
change sign so the last dimension becomes [-odd, +even] | |
""" | |
from einops import rearrange | |
x = rearrange(x, '... (j d) -> ... j d', j=2) | |
x1, x2 = x.unbind(dim=-2) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(t, freqs): | |
""" | |
input tensor t is of shape [seq_length, ..., dim] | |
rotary positional embeding tensor freqs is of shape [seq_length, ..., dim] | |
check https://kexue.fm/archives/8265 for detailed formulas | |
""" | |
rot_dim = freqs.shape[-1] | |
t_pass = None | |
# due to 0 dim of t_pass tensor, there is zeros tensor DMA from H2D which | |
# affects performance, check whether we need t_pass | |
if t.shape[-1] != rot_dim: | |
# ideally t_pass is empty so rotary pos embedding is applied to all tensor t | |
t, t_pass = t[..., :rot_dim], t[..., rot_dim:] | |
global cos_cached, sin_cached | |
if cos_cached is None or sin_cached is None: | |
cos_cached = freqs.cos().to(t.dtype) | |
sin_cached = freqs.sin().to(t.dtype) | |
if t.device.type == "hpu": | |
assert RotaryPosEmbeddingHelperV1 is not None, "failed to import RotaryPosEmbeddingHelperV1" | |
t = RotaryPosEmbeddingHelperV1.apply(t, cos_cached, sin_cached, 0) # offset already used in RotaryEmbedding.forward | |
else: | |
# first part is cosine component | |
# second part is sine component, need to change signs with _rotate_half method | |
t = (t * cos_cached) + (_rotate_half(t) * sin_cached) | |
if t_pass is None: | |
return t | |
return torch.cat((t, t_pass), dim=-1) | |