peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/model
/t5_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""T5 model.""" | |
import torch | |
from megatron import get_args | |
from megatron.core import tensor_parallel | |
from megatron.model.enums import AttnMaskType | |
from megatron.model.language_model import parallel_lm_logits, get_language_model | |
from megatron.model import LayerNorm | |
from megatron.model.utils import ( | |
openai_gelu, | |
get_linear_layer | |
) | |
from .module import MegatronModule | |
def t5_extended_attention_mask(attention_mask_list): | |
def attn_mask_postprocess(attn_mask): | |
# [b, 1, s, s] | |
extended_attention_mask = attn_mask.unsqueeze(1) | |
return extended_attention_mask | |
return [attn_mask_postprocess(attn_mask) for attn_mask in attention_mask_list] | |
def t5_position_ids(token_ids): | |
# Create position ids | |
seq_length = token_ids.size(1) | |
position_ids = torch.arange(seq_length, dtype=torch.long, | |
device=token_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(token_ids) | |
return position_ids | |
class T5LMHead(MegatronModule): | |
"""Masked LM head for T5 | |
Arguments: | |
mpu_vocab_size: model parallel size of vocabulary. | |
parallel_output: wether output logits being distributed or not. | |
""" | |
def __init__(self, mpu_vocab_size, parallel_output): | |
super(T5LMHead, self).__init__() | |
self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size)) | |
self.bias.model_parallel = True | |
self.bias.partition_dim = 0 | |
self.bias.stride = 1 | |
self.parallel_output = parallel_output | |
def forward(self, hidden_states, word_embeddings_weight): | |
output = parallel_lm_logits(hidden_states, | |
word_embeddings_weight, | |
self.parallel_output, | |
bias=self.bias) | |
return output | |
class T5Model(MegatronModule): | |
"""T5 Language model.""" | |
def __init__(self, | |
config, | |
num_tokentypes=0, | |
parallel_output=True, | |
pre_process=True, | |
post_process=True, | |
add_encoder=True, | |
add_decoder=True, | |
return_moe_loss=False): | |
super().__init__(config=config) | |
args = get_args() | |
self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy | |
self.parallel_output = parallel_output | |
self.pre_process = pre_process | |
self.post_process = post_process | |
self.add_encoder = add_encoder | |
self.add_decoder = add_decoder | |
self.return_moe_loss = return_moe_loss | |
self.language_model, self._language_model_key = get_language_model( | |
config=config, | |
num_tokentypes=num_tokentypes, | |
add_pooler=False, | |
add_encoder=add_encoder, | |
add_decoder=add_decoder, | |
encoder_attn_mask_type=AttnMaskType.padding, | |
pre_process=self.pre_process, | |
post_process=self.post_process, | |
num_experts=args.num_experts,) | |
self.initialize_word_embeddings() | |
if self.post_process and self.add_decoder: | |
self.lm_head = T5LMHead( | |
self.shared_embedding_or_output_weight().size(0), | |
parallel_output) | |
self._lm_head_key = 'lm_head' | |
def set_input_tensor(self, input_tensor): | |
"""See megatron.model.transformer.set_input_tensor()""" | |
self.language_model.set_input_tensor(input_tensor) | |
def forward(self, encoder_input_ids, decoder_input_ids, encoder_attn_mask, | |
decoder_attn_mask, encoder_decoder_attn_mask, | |
tokentype_ids=None, lm_labels=None, enc_hidden_states=None): | |
# Converting the attention masks to proper parameter settings | |
encoder_attn_mask, decoder_attn_mask, encoder_decoder_attn_mask = t5_extended_attention_mask( | |
[encoder_attn_mask, decoder_attn_mask, encoder_decoder_attn_mask]) | |
encoder_position_ids = t5_position_ids(encoder_input_ids) | |
decoder_position_ids = t5_position_ids(decoder_input_ids) | |
lm_output = self.language_model(encoder_input_ids, | |
encoder_position_ids, | |
encoder_attn_mask, | |
decoder_input_ids, | |
decoder_position_ids, | |
decoder_attn_mask, | |
encoder_decoder_attn_mask, | |
tokentype_ids=tokentype_ids, | |
enc_hidden_states=enc_hidden_states) | |
if self.post_process and self.add_decoder: | |
decoder_output, encoder_output, dec_moe_losses, enc_moe_losses = lm_output | |
# Output. [s, b, h] | |
lm_logits = self.lm_head(decoder_output, | |
self.shared_embedding_or_output_weight()) | |
if lm_labels is None: | |
# [s b h] => [b s h] | |
return lm_logits.transpose(0,1).contiguous() | |
else: | |
# [b s] => [s b] | |
lm_labels = lm_labels.transpose(0,1).contiguous() | |
if self.fp16_lm_cross_entropy: | |
assert lm_logits.dtype == torch.half | |
lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits, lm_labels) | |
else: | |
lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits.float(), | |
lm_labels) | |
# [s b] => [b s] | |
lm_loss = lm_loss.transpose(0,1).contiguous() | |
return lm_loss, dec_moe_losses, enc_moe_losses if self.return_moe_loss else lm_loss | |
elif self.add_decoder and not self.add_encoder: | |
decoder_output, _, decoder_moe_losses, _= lm_output | |
return decoder_output, decoder_moe_losses | |
return lm_output | |
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): | |
"""For easy load when model is combined with other heads, | |
add an extra key.""" | |
state_dict_ = {} | |
state_dict_[self._language_model_key] \ | |
= self.language_model.state_dict_for_save_checkpoint(prefix=prefix, | |
keep_vars=keep_vars) | |
if self.post_process and self.add_decoder: | |
state_dict_[self._lm_head_key] \ | |
= self.lm_head.state_dict_for_save_checkpoint(prefix=prefix, | |
keep_vars=keep_vars) | |
# Save word_embeddings. | |
if self.post_process and not self.pre_process and self.add_decoder: | |
state_dict_[self._word_embeddings_for_head_key] \ | |
= self.word_embeddings.state_dict(prefix=prefix, | |
keep_vars=keep_vars) | |
return state_dict_ | |
def load_state_dict(self, state_dict, strict=True): | |
"""Customized load.""" | |
self.language_model.load_state_dict( | |
state_dict[self._language_model_key], strict=strict) | |
if self.post_process and self.add_decoder: | |
self.lm_head.load_state_dict(state_dict[self._lm_head_key], | |
strict=strict) | |
# Load word embeddings. | |
if self.post_process and not self.pre_process and self.add_decoder: | |
self.word_embeddings.load_state_dict( | |
state_dict[self._word_embeddings_for_head_key], strict=strict) | |