peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/model
/transformer.py
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. | |
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
"""Transformer.""" | |
from contextlib import nullcontext | |
import math | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from typing import Optional | |
from megatron import get_timers, get_args, get_retro_args, core, get_num_microbatches | |
from .module import MegatronModule | |
from .rmsnorm import RMSNorm | |
from megatron.core import parallel_state, tensor_parallel, mpu | |
from megatron.core.enums import ModelType | |
from megatron.model import LayerNorm | |
from megatron.model.enums import AttnMaskType, LayerType, AttnType | |
from megatron.model.fused_softmax import FusedScaleMaskSoftmax | |
from megatron.model.fused_bias_gelu import bias_gelu_impl | |
from megatron.model.rotary_pos_embedding import apply_rotary_pos_emb | |
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu | |
import deepspeed | |
from deepspeed.moe.layer import MoE | |
from deepspeed.accelerator import get_accelerator | |
try: | |
from deepspeed.sequence.layer import DistributedAttention | |
dist_attn_supported = True | |
except ImportError: | |
dist_attn_supported = False | |
try: | |
from einops import rearrange | |
except ImportError: | |
rearrange = None | |
try: | |
# FlashAttention (1.x) | |
from flash_attn.flash_attn_interface import flash_attn_unpadded_func | |
from flash_attn.flash_attn_triton import flash_attn_func | |
except ImportError: | |
flash_attn_unpadded_func = None | |
flash_attn_func = None | |
try: | |
# FlashAttention-2 | |
from flash_attn.flash_attn_interface import flash_attn_varlen_func | |
except ImportError: | |
flash_attn_varlen_func = None | |
FlashAttentionBuilder = get_accelerator().get_op_builder("FlashAttentionBuilder") | |
flash_attn_builder = None | |
try: | |
flash_attn_builder = FlashAttentionBuilder().load() | |
except (TypeError, ValueError): | |
flash_attn_builder = None | |
try: | |
from apex.normalization import MixedFusedRMSNorm | |
except ImportError: | |
MixedFusedRMSNorm = RMSNorm | |
try: | |
import habana_frameworks.torch.hpu as hthpu | |
from habana_frameworks.torch.hpex.kernels import FusedSDPA | |
except ImportError: | |
hthpu = None | |
FusedSDPA = None | |
""" We use the following notation throughout this file: | |
h: hidden size | |
n: number of attention heads | |
p: number of model parallel partitions | |
np: n/p | |
hp: h/p | |
hn: h/n | |
b: batch size | |
s: sequence length | |
l: number of layers | |
Transformer takes input of size [s, b, h] and returns a | |
tensor of the same size. We use the following arguments: | |
hyperparameters: transformer hyperparameters | |
""" | |
class DropPath(MegatronModule): | |
"""Drop paths (Stochastic Depth) per sample | |
(when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=0.): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_state): | |
if self.drop_prob == 0. or not self.training: | |
return hidden_state | |
keep_prob = 1 - self.drop_prob | |
# work with diff dim tensors, not just 2D ConvNets | |
# hidden_state: [s, b, h] | |
shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2) | |
random_tensor = keep_prob + \ | |
torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device) | |
random_tensor.floor_() # binarize | |
output = hidden_state.div(keep_prob) * random_tensor | |
return output | |
class ParallelMLP(MegatronModule): | |
"""MLP. | |
MLP will take the input with h hidden state, project it to 4*h | |
hidden dimension, perform nonlinear transformation, and project the | |
state back into h hidden dimension. | |
""" | |
def __init__(self, config, moe=False, enable_expert_tensor_parallelism=False): | |
super(ParallelMLP, self).__init__() | |
args = get_args() | |
self.add_bias = config.add_bias_linear | |
ffn_hidden_size = config.ffn_hidden_size | |
if config.gated_linear_unit: | |
ffn_hidden_size *= 2 | |
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf | |
self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear( | |
config.hidden_size, | |
ffn_hidden_size, | |
config=config, | |
init_method=config.init_method, | |
bias=self.add_bias, | |
gather_output=False, | |
skip_bias_add=True, | |
moe=moe, | |
enable_expert_tensor_parallelism=enable_expert_tensor_parallelism | |
) | |
self.bias_gelu_fusion = False | |
self.activation_func = None | |
self.swiglu = args.swiglu | |
if args.openai_gelu: | |
self.activation_func = openai_gelu | |
elif args.onnx_safe: | |
self.activation_func = erf_gelu | |
elif args.swiglu: | |
def swiglu(x): | |
x = torch.chunk(x, 2, dim=-1) | |
return F.silu(x[0]) * x[1] | |
self.activation_func = swiglu | |
elif args.squared_relu: | |
def squared_relu(x): | |
return torch.pow(F.relu(x), 2) | |
self.activation_func = squared_relu | |
else: | |
self.bias_gelu_fusion = args.bias_gelu_fusion | |
self.activation_func = F.gelu | |
# Project back to h. | |
self.dense_4h_to_h = tensor_parallel.RowParallelLinear( | |
config.ffn_hidden_size, | |
config.hidden_size, | |
config=config, | |
init_method=config.output_layer_init_method, | |
bias=self.add_bias, | |
input_is_parallel=True, | |
moe=moe, | |
enable_expert_tensor_parallelism=enable_expert_tensor_parallelism | |
) | |
def forward(self, hidden_states): | |
# [s, b, 4hp] | |
intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states) | |
if self.bias_gelu_fusion: | |
assert self.add_bias is True | |
# DeepSpeed FLOPS profiler temporarily substitues functions like F.gelu to calculate the throughput | |
assert hasattr(self, "__flops__") or self.activation_func == F.gelu | |
intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel) | |
else: | |
if bias_parallel is not None: | |
intermediate_parallel = intermediate_parallel + bias_parallel | |
intermediate_parallel = self.activation_func(intermediate_parallel) | |
# [s, b, h] | |
output, output_bias = self.dense_4h_to_h(intermediate_parallel) | |
return output, output_bias | |
class SwitchMLP(MegatronModule): | |
""" | |
Routes input to one of N MLP "experts" | |
""" | |
def __init__(self, config): | |
super(SwitchMLP, self).__init__() | |
args = get_args() | |
self.router = torch.nn.Linear(config.hidden_size, args.num_experts_switch) | |
self.experts = torch.nn.ModuleList() | |
for i in range(args.num_experts_switch): | |
self.experts.append(ParallelMLP(config)) | |
def forward(self, hidden_states): | |
# hidden_states: [s, b, h] | |
s = hidden_states.size(0) | |
b = hidden_states.size(1) | |
h = hidden_states.size(2) | |
route = self.router(hidden_states) | |
route = torch.nn.functional.softmax(route, dim=2) | |
max_prob, max_ind = torch.max(route, dim=2) | |
max_prob = torch.unsqueeze(max_prob, 2) # [s b 1] | |
# TODO (rprenger) TODO this could be made easier to read | |
# Converting [s, b, h] to [s*b, h]. | |
# Each vector could be routed differently | |
hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h] | |
max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1] | |
max_ind = max_ind.view(-1) # [s*b] | |
output_total = torch.empty_like(hidden_states) | |
output_bias_total = torch.empty_like(hidden_states) | |
#TODO (rprenger) This does each expert in serial, but it could be parallelized | |
for expert_num, expert in enumerate(self.experts): | |
local_indices = (max_ind == expert_num).nonzero() | |
hidden = hidden_states[local_indices,:] | |
output, output_bias = expert(hidden) | |
output_bias = output_bias.expand_as(output) | |
output_total[local_indices,:] = output | |
output_bias_total[local_indices,:] = output_bias | |
output_total = output_total*max_prob | |
output_bias_total = output_bias_total*max_prob | |
output_total = output_total.view(s, b, h) | |
output_bias_total = output_bias_total.view(s, b, h) | |
return output_total, output_bias_total | |
class CoreAttention(MegatronModule): | |
def __init__(self, layer_number, config, | |
attn_mask_type=AttnMaskType.padding): | |
super(CoreAttention, self).__init__() | |
self.fp16 = config.fp16 | |
self.bf16 = config.bf16 | |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling | |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 | |
if self.apply_query_key_layer_scaling: | |
self.attention_softmax_in_fp32 = True | |
self.layer_number = max(1, layer_number+1) | |
self.attn_mask_type = attn_mask_type | |
self.sequence_parallel = config.sequence_parallel | |
projection_size = config.kv_channels * config.num_attention_heads | |
# Per attention head and per partition values. | |
seq_parallel_world_size = 1 | |
if parallel_state.sequence_parallel_is_initialized(): | |
seq_parallel_world_size = parallel_state.get_sequence_parallel_world_size() | |
world_size = seq_parallel_world_size if seq_parallel_world_size > 1 else parallel_state.get_tensor_model_parallel_world_size() | |
self.hidden_size_per_partition = core.utils.divide(projection_size, | |
world_size) | |
self.hidden_size_per_attention_head = core.utils.divide( | |
projection_size, config.num_attention_heads) | |
self.num_attention_heads_per_partition = core.utils.divide( | |
config.num_attention_heads, world_size) | |
coeff = None | |
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) | |
if self.apply_query_key_layer_scaling: | |
coeff = self.layer_number | |
self.norm_factor *= coeff | |
self.scale_mask_softmax = FusedScaleMaskSoftmax( | |
self.fp16, self.bf16, | |
self.attn_mask_type, | |
config.masked_softmax_fusion, | |
attention_mask_func, | |
self.attention_softmax_in_fp32, | |
coeff) | |
# Dropout. Note that for a single iteration, this layer will generate | |
# different outputs on different number of parallel partitions but | |
# on average it should not be partition dependent. | |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout) if config.attention_dropout != 0 else None | |
def forward(self, query_layer, key_layer, | |
value_layer, attention_mask): | |
# =================================== | |
# Raw attention scores. [b, np, s, s] | |
# =================================== | |
# [b, np, sq, sk] | |
output_size = (query_layer.size(1), | |
query_layer.size(2), | |
query_layer.size(0), | |
key_layer.size(0)) | |
# [sq, b, np, hn] -> [sq, b * np, hn] | |
query_layer = query_layer.view(output_size[2], | |
output_size[0] * output_size[1], -1) | |
# [sk, b, np, hn] -> [sk, b * np, hn] | |
key_layer = key_layer.view(output_size[3], | |
output_size[0] * output_size[1], -1) | |
# preallocting input tensor: [b * np, sq, sk] | |
matmul_input_buffer = parallel_state.get_global_memory_buffer().get_tensor( | |
(output_size[0]*output_size[1], output_size[2], output_size[3]), | |
query_layer.dtype, "mpu") | |
# Raw attention scores. [b * np, sq, sk] | |
matmul_result = torch.baddbmm( | |
matmul_input_buffer, | |
query_layer.transpose(0, 1), # [b * np, sq, hn] | |
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk] | |
beta=0.0, alpha=(1.0/self.norm_factor)) | |
# change view to [b, np, sq, sk] | |
attention_scores = matmul_result.view(*output_size) | |
# =========================== | |
# Attention probs and dropout | |
# =========================== | |
# attention scores and attention mask [b, np, sq, sk] | |
attention_probs = self.scale_mask_softmax(attention_scores, | |
attention_mask) | |
if self.attention_dropout is not None: | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
if not self.sequence_parallel: | |
with tensor_parallel.get_cuda_rng_tracker().fork(): | |
attention_probs = self.attention_dropout(attention_probs) | |
else: | |
attention_probs = self.attention_dropout(attention_probs) | |
# ========================= | |
# Context layer. [sq, b, hp] | |
# ========================= | |
# value_layer -> context layer. | |
# [sk, b, np, hn] --> [b, np, sq, hn] | |
# context layer shape: [b, np, sq, hn] | |
output_size = (value_layer.size(1), | |
value_layer.size(2), | |
query_layer.size(0), | |
value_layer.size(3)) | |
# change view [sk, b * np, hn] | |
value_layer = value_layer.view(value_layer.size(0), | |
output_size[0] * output_size[1], -1) | |
# change view [b * np, sq, sk] | |
attention_probs = attention_probs.view(output_size[0] * output_size[1], | |
output_size[2], -1) | |
# matmul: [b * np, sq, hn] | |
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) | |
# change view [b, np, sq, hn] | |
context_layer = context_layer.view(*output_size) | |
# [b, np, sq, hn] --> [sq, b, np, hn] | |
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() | |
# [sq, b, np, hn] --> [sq, b, hp] | |
new_context_layer_shape = context_layer.size()[:-2] + \ | |
(self.hidden_size_per_partition,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
return context_layer | |
class FlashSelfAttention(torch.nn.Module): | |
"""Implement the scaled dot product attention with softmax. | |
Arguments | |
--------- | |
softmax_scale: The temperature to use for the softmax attention. | |
(default: 1/sqrt(d_keys) where d_keys is computed at | |
runtime) | |
attention_dropout: The dropout rate to apply to the attention | |
(default: 0.0) | |
""" | |
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, | |
device=None, dtype=None): | |
super().__init__() | |
assert flash_attn_unpadded_func is not None or flash_attn_varlen_func is not None or flash_attn_builder is not None, \ | |
('Please install FlashAttention first, e.g., with pip install flash-attn or implement your own flash attention') | |
assert rearrange is not None, 'Please install einops first, e.g., with pip install einops' | |
self.causal = causal | |
self.softmax_scale = softmax_scale | |
self.dropout_p = attention_dropout | |
# Use FlashAttention-2 when args.use_flash_attn_v2 is True | |
args = get_args() | |
self.flash_attn_func = flash_attn_varlen_func if args.use_flash_attn_v2 else flash_attn_unpadded_func | |
def forward(self, q, k, v): | |
"""Implements the multihead softmax attention. | |
Arguments | |
--------- | |
q, k, v: The tensor containing the query, key, and value. (B, S, H, D) | |
""" | |
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v))) | |
assert all((get_accelerator().on_accelerator(i) for i in (q, k, v))) | |
# if get_accelerator().device_name() == 'cuda': | |
# assert all((i.is_cuda for i in (q,k,v))) | |
# else: | |
# assert all((i.is_xpu for i in (q,k,v))) | |
batch_size, seqlen_q = q.shape[0], q.shape[1] | |
seqlen_k = k.shape[1] | |
if get_accelerator().device_name() == 'cuda': | |
# goes for cuda device | |
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]] | |
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, | |
device=q.device) | |
else: | |
# goes for other device | |
q, k, v = [rearrange(x, 'b s h d -> b h s d').contiguous() for x in [q, k, v]] | |
if self.training: | |
# during training q,k,v always have same seqlen | |
assert seqlen_k == seqlen_q | |
is_causal = self.causal | |
cu_seqlens_k = cu_seqlens_q if get_accelerator().device_name() == 'cuda' else None | |
dropout_p = self.dropout_p | |
else: | |
# turn off FA causal mask after first inference autoregressive iteration | |
# only on first autoregressive step q,k,v have same seqlen | |
is_causal = seqlen_q == seqlen_k | |
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, | |
device=q.device) if get_accelerator().device_name() == 'cuda' else None | |
dropout_p = 0 | |
output = self.flash_attn_func( | |
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, | |
dropout_p, | |
softmax_scale=self.softmax_scale, causal=is_causal | |
) if get_accelerator().device_name() == 'cuda' else flash_attn_builder.flash_attn_func( | |
q, k, v, self.dropout_p, self.softmax_scale, is_causal | |
) | |
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) if get_accelerator().device_name() == 'cuda' else rearrange( | |
output, 'b h s d -> b s h d').contiguous() | |
return output | |
class FlashSelfAttentionTriton(torch.nn.Module): | |
"""Implement the scaled dot product attention with softmax. | |
Arguments | |
--------- | |
softmax_scale: The temperature to use for the softmax attention. | |
(default: 1/sqrt(d_keys) where d_keys is computed at | |
runtime) | |
attention_dropout: The dropout rate to apply to the attention | |
(default: 0.0) | |
""" | |
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, | |
device=None, dtype=None): | |
super().__init__() | |
assert flash_attn_func is not None, ('Triton version of FlashAttention is not installed.') | |
assert rearrange is not None, 'Please install einops first, e.g., with pip install einops' | |
self.causal = causal | |
self.softmax_scale = softmax_scale | |
self.dropout_p = attention_dropout | |
def forward(self, q, k, v): | |
"""Implements the multihead softmax attention. | |
Arguments | |
--------- | |
q, k, v: The tensor containing the query, key, and value. (B, S, H, D) | |
""" | |
assert q.dtype in [torch.float16, torch.bfloat16] | |
assert q.is_cuda | |
q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() | |
for x in (q, k, v)] | |
output = flash_attn_func(q, k, v, None, self.causal) | |
output = rearrange(output, 'b s h d -> s b (h d)').contiguous() | |
return output | |
class HabanaFlashSelfAttention(MegatronModule): | |
def __init__(self, config, attn_mask_type=AttnMaskType.padding): | |
super(HabanaFlashSelfAttention, self).__init__() | |
assert hthpu is not None, "Failed to import hthpu" | |
assert FusedSDPA is not None, "Failed to import FusedSDPA" | |
self.attn_mask_type = attn_mask_type | |
self.attention_dropout_p = config.attention_dropout | |
self.use_fused_sdpa = config.use_fused_sdpa | |
self.use_fused_sdpa_with_recompute = config.use_fused_sdpa_with_recompute | |
# Per attention head and per partition values. | |
seq_parallel_world_size = 1 | |
if parallel_state.sequence_parallel_is_initialized(): | |
seq_parallel_world_size = parallel_state.get_sequence_parallel_world_size() | |
world_size = seq_parallel_world_size if seq_parallel_world_size > 1 else parallel_state.get_tensor_model_parallel_world_size() | |
projection_size = config.kv_channels * config.num_attention_heads | |
self.hidden_size_per_partition = core.utils.divide(projection_size, | |
world_size) | |
def forward(self, query_layer, key_layer, | |
value_layer, attention_mask): | |
# [sq, b, np, hn] -> [b, np, sq, hn] | |
q, k, v = [x.transpose(0, 1).transpose(1, 2) for x in [query_layer, key_layer, value_layer]] | |
causal = True | |
scale = None | |
attn_mask = None | |
with hthpu.sdp_kernel(enable_recompute=self.use_fused_sdpa_with_recompute): | |
context_layer = FusedSDPA.apply(q, k, v, attn_mask, self.attention_dropout_p, causal, scale) | |
# [b, np, sq, hn] --> [sq, b, np, hn] | |
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() | |
# [sq, b, np, hn] --> [sq, b, hp] | |
new_context_layer_shape = context_layer.size()[:-2] + \ | |
(self.hidden_size_per_partition,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
return context_layer | |
class ParallelAttention(MegatronModule): | |
"""Parallel self-attention layer abstract class. | |
Self-attention layer takes input with size [s, b, h] | |
and returns output of the same size. | |
""" | |
def __init__(self, config, layer_number, | |
attention_type=AttnType.self_attn, | |
attn_mask_type=AttnMaskType.padding): | |
super(ParallelAttention, self).__init__() | |
args = get_args() | |
self.layer_number = max(1, layer_number) | |
self.attention_type = attention_type | |
self.attn_mask_type = attn_mask_type | |
self.params_dtype = config.params_dtype | |
self.sequence_parallel = config.sequence_parallel | |
self.num_attention_heads = config.num_attention_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
# TODO - Remove self.attention_dropout usage when SW-172239 is solved | |
self.attention_dropout = config.attention_dropout | |
self.use_gqa = (self.num_attention_heads != self.num_key_value_heads) | |
self.use_flash_attn = (args.use_flash_attn_v1 or args.use_flash_attn_triton or args.use_flash_attn_v2) \ | |
and attention_type == AttnType.self_attn \ | |
and self.attn_mask_type == AttnMaskType.causal | |
self.use_flash_attn_triton = args.use_flash_attn_triton | |
self.use_fused_sdpa = config.use_fused_sdpa | |
if self.use_flash_attn: | |
global flash_attn_builder | |
try: | |
flash_attn_builder = FlashAttentionBuilder().load() | |
except TypeError: | |
flash_attn_builder = None | |
if args.use_flash_attn_v1: | |
assert flash_attn_unpadded_func != None or flash_attn_builder != None, ("Cannot import FlashAttention v1 " | |
"and Cannot find FlashAttention Builder") | |
if args.use_flash_attn_v2: | |
assert flash_attn_varlen_func != None, "Cannot import FlashAttention v2 " | |
if args.use_flash_attn_triton: | |
assert flash_attn_func != None, "Cannot import FlashAttention triton " | |
assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports ' | |
'self-attention for now') | |
assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only ' | |
'supports causal mask for now') | |
if rearrange is None: | |
raise ImportError('einops is not installed, please install with pip install einops') | |
projection_size = config.kv_channels * config.num_attention_heads | |
# Per attention head and per partition values. | |
world_size = parallel_state.get_tensor_model_parallel_world_size() | |
self.hidden_size_per_attention_head = core.utils.divide( | |
projection_size, config.num_attention_heads) | |
self.num_attention_heads_per_partition = core.utils.divide( | |
config.num_attention_heads, world_size) | |
# Per GQA head and per partition values | |
self.num_key_value_heads_per_partition = core.utils.divide( | |
config.num_key_value_heads, world_size) | |
self.num_key_value_groups = core.utils.divide( | |
config.num_attention_heads, config.num_key_value_heads) | |
kv_projection_size = config.kv_channels * config.num_key_value_heads | |
assert self.hidden_size_per_attention_head == core.utils.divide( | |
kv_projection_size, config.num_key_value_heads) | |
# Strided linear layer. | |
if attention_type == AttnType.self_attn: | |
self.query_key_value = tensor_parallel.ColumnParallelLinear( | |
config.hidden_size, | |
projection_size + 2 * kv_projection_size, | |
config=config, | |
init_method=config.init_method, | |
bias=args.add_bias_linear, | |
gather_output=False) | |
else: | |
assert attention_type == AttnType.cross_attn | |
self.query = tensor_parallel.ColumnParallelLinear( | |
config.hidden_size, | |
projection_size, | |
config=config, | |
init_method=config.init_method, | |
bias=config.add_bias_linear, | |
gather_output=False) | |
self.key_value = tensor_parallel.ColumnParallelLinear( | |
config.hidden_size, | |
2 * projection_size, | |
config=config, | |
init_method=config.init_method, | |
bias=config.add_bias_linear, | |
gather_output=False) | |
# Currently FlashAttention only works with causal mask | |
if self.use_flash_attn_triton: | |
local_attn = FlashSelfAttentionTriton(causal=True, attention_dropout=args.attention_dropout) | |
elif self.use_flash_attn: | |
local_attn = FlashSelfAttention(causal=True, attention_dropout=config.attention_dropout) | |
elif self.use_fused_sdpa: | |
local_attn = HabanaFlashSelfAttention(config, self.attn_mask_type) | |
else: | |
local_attn = CoreAttention(self.layer_number, config, self.attn_mask_type) | |
self.enable_ds_sequence_parallel = parallel_state.get_sequence_parallel_world_size() > 1 \ | |
or args.force_ds_sequence_parallel | |
if self.enable_ds_sequence_parallel: | |
assert dist_attn_supported, 'Distributed attention is not supported in this DeepSpeed version' | |
assert args.num_attention_heads % parallel_state.get_sequence_parallel_world_size() == 0 | |
self.dist_attn = DistributedAttention(local_attn, parallel_state.get_sequence_parallel_group()) | |
else: | |
if self.use_flash_attn: | |
self.core_attention_flash = local_attn | |
else: | |
self.core_attention = local_attn | |
self.checkpoint_core_attention = config.recompute_granularity == 'selective' | |
# Output. | |
self.dense = tensor_parallel.RowParallelLinear( | |
projection_size, | |
config.hidden_size, | |
config=config, | |
init_method=config.output_layer_init_method, | |
bias=args.add_bias_linear, | |
input_is_parallel=True, | |
skip_bias_add=True) | |
def _checkpointed_attention_forward(self, query_layer, key_layer, | |
value_layer, attention_mask, | |
rotary_pos_emb=None): | |
"""Forward method with activation checkpointing.""" | |
def custom_forward(*inputs): | |
query_layer = inputs[0] | |
key_layer = inputs[1] | |
value_layer = inputs[2] | |
attention_mask = inputs[3] | |
output_ = self.core_attention(query_layer, key_layer, | |
value_layer, attention_mask) | |
return output_ | |
q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \ | |
else rotary_pos_emb | |
hidden_states = tensor_parallel.checkpoint( | |
custom_forward, | |
False, query_layer, key_layer, value_layer, attention_mask, | |
q_pos_emb, k_pos_emb) | |
return hidden_states | |
def _allocate_memory(self, inference_max_sequence_len, batch_size): | |
return torch.empty( | |
inference_max_sequence_len, | |
batch_size, | |
self.num_attention_heads_per_partition, | |
self.hidden_size_per_attention_head, | |
dtype=self.params_dtype, | |
device=get_accelerator().current_device_name()) | |
def repeat_kv(self, hidden_states, n_rep): | |
slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
elif num_key_value_heads_per_partition == 1: | |
# If no of KV heads is 1 then just perform expand operation | |
# instead of unsqueeze, expand and reshape to match query states. | |
return hidden_states.expand(slen, batch, n_rep, head_dim) | |
else: | |
hidden_states = hidden_states[:, :, :, None, :].expand( | |
slen, batch, num_key_value_heads_per_partition, n_rep, head_dim) | |
return hidden_states.reshape(slen, batch, | |
num_key_value_heads_per_partition * n_rep, | |
head_dim) | |
def split_tensor(self, mixed_x_layer): | |
query_layer, key_layer, value_layer = torch.split(mixed_x_layer, [self.num_key_value_groups, 1, 1], dim=-2) | |
query_layer = query_layer.reshape(mixed_x_layer.shape[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)) | |
key_layer = torch.squeeze(key_layer, -2) | |
value_layer = torch.squeeze(value_layer, -2) | |
return query_layer, key_layer, value_layer | |
def forward(self, hidden_states, attention_mask, | |
encoder_output=None, inference_params=None, | |
rotary_pos_emb=None): | |
# hidden_states: [sq, b, h] | |
# ================================================= | |
# Pre-allocate memory for key-values for inference. | |
# ================================================= | |
is_first_step = False | |
if inference_params: | |
if self.layer_number not in inference_params.key_value_memory_dict: | |
inf_max_seq_len = inference_params.max_sequence_len | |
inf_max_batch_size = inference_params.max_batch_size | |
inference_key_memory = self._allocate_memory( | |
inf_max_seq_len, inf_max_batch_size) | |
inference_value_memory = self._allocate_memory( | |
inf_max_seq_len, inf_max_batch_size) | |
inference_params.key_value_memory_dict[self.layer_number] = ( | |
inference_key_memory, inference_value_memory) | |
is_first_step = True | |
else: | |
inference_key_memory, inference_value_memory = \ | |
inference_params.key_value_memory_dict[self.layer_number] | |
# ===================== | |
# Query, Key, and Value | |
# ===================== | |
if self.attention_type == AttnType.self_attn: | |
# Attention heads [sq, b, h] --> [sq, b, ((nq + 2 * nkv) * hn)] | |
mixed_x_layer, _ = self.query_key_value(hidden_states) | |
# [sq, b, ((nq + 2 * nkv) * hn)] --> [sq, b, nkv, (nq // nkv + 2), hn] | |
new_tensor_shape = mixed_x_layer.size()[:-1] + \ | |
(-1, (self.num_key_value_groups + 2), | |
self.hidden_size_per_attention_head) | |
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) | |
# [sq, b, nkv, (nq // nkv + 2), hn] --> 3 [sq, b, np, hn] | |
(query_layer, | |
key_layer, | |
value_layer) = self.split_tensor(mixed_x_layer) | |
# Repeat kv ; fused SPDA internally handles it | |
# TODO - Remove self.attention_dropout check when SW-172239 is solved | |
if self.use_gqa and (not self.use_fused_sdpa or self.attention_dropout != 0): | |
key_layer = self.repeat_kv(key_layer, self.num_key_value_groups) | |
value_layer = self.repeat_kv(value_layer, | |
self.num_key_value_groups) | |
else: | |
assert not self.use_gqa, 'GQA + cross-attn not tested yet' | |
# Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)] | |
mixed_kv_layer, _ = self.key_value(encoder_output) | |
# [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn] | |
new_tensor_shape = mixed_kv_layer.size()[:-1] + \ | |
(self.num_attention_heads_per_partition, | |
2 * self.hidden_size_per_attention_head) | |
mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) | |
# [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn] | |
(key_layer, | |
value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2) | |
# Attention head [sq, b, h] --> [sq, b, hp] | |
query_layer, _ = self.query(hidden_states) | |
# [sq, b, hp] --> [sq, b, np, hn] | |
new_tensor_shape = query_layer.size()[:-1] + \ | |
(self.num_attention_heads_per_partition, | |
self.hidden_size_per_attention_head) | |
query_layer = query_layer.view(*new_tensor_shape) | |
# ================================== | |
# Adjust key and value for inference | |
# ================================== | |
# duplicate the pos_emb for self attention | |
if rotary_pos_emb is not None: | |
if isinstance(rotary_pos_emb, tuple): | |
rotary_pos_emb = rotary_pos_emb | |
else: | |
rotary_pos_emb = ((rotary_pos_emb,) * 2) | |
if inference_params: | |
batch_start = inference_params.batch_size_offset | |
batch_end = batch_start + key_layer.size(1) | |
assert batch_end <= inference_key_memory.size(1) | |
sequence_start = inference_params.sequence_len_offset | |
sequence_end = sequence_start + key_layer.size(0) | |
assert sequence_end <= inference_key_memory.size(0) | |
# Copy key and values. | |
inference_key_memory[sequence_start:sequence_end, | |
batch_start:batch_end, ...] = key_layer | |
inference_value_memory[sequence_start:sequence_end, | |
batch_start:batch_end, ...] = value_layer | |
key_layer = inference_key_memory[ | |
:sequence_end, batch_start:batch_end, ...] | |
value_layer = inference_value_memory[ | |
:sequence_end, batch_start:batch_end, ...] | |
# adjust the key rotary positional embedding | |
if rotary_pos_emb is not None: | |
q_pos_emb, k_pos_emb = rotary_pos_emb | |
# need to cross check this condition during inference | |
# if not set_inference_key_value_memory: | |
if not is_first_step: | |
# In inference, we compute one token at a time. | |
# Select the correct positional embedding | |
# (only the last token in the sequence) | |
q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end] | |
else: | |
# In the first forward pass of inference, | |
# we use the entire provided prefix. | |
# q_pos_emb here has the rope embeddings of the entire | |
# prefix + to-be-generated output so | |
# we slice to just the prefix. | |
q_pos_emb = q_pos_emb[:sequence_end, :, :, :] | |
k_pos_emb = k_pos_emb[:sequence_end, :, :, :] | |
rotary_pos_emb = (q_pos_emb, k_pos_emb) | |
# ================================== | |
# core attention computation | |
# ================================== | |
# apply relative positional encoding (rotary embedding) | |
if rotary_pos_emb is not None: | |
q_pos_emb, k_pos_emb = rotary_pos_emb | |
query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb) | |
key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb) | |
# TODO, can apply positional embedding to value_layer so it has | |
# absolute positional embedding. | |
# otherwise, only relative positional embedding takes effect | |
# value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb) | |
if self.enable_ds_sequence_parallel: | |
if self.use_flash_attn: | |
if not self.use_flash_attn_triton: | |
query_layer, key_layer, value_layer = [rearrange(x, 's b ... -> b s ...').contiguous() | |
for x in (query_layer, key_layer, value_layer)] | |
context_layer = self.dist_attn(query_layer, key_layer, value_layer) | |
if not self.use_flash_attn_triton: | |
context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous() | |
else: | |
context_layer = self.dist_attn(query_layer, key_layer, value_layer, attention_mask) | |
else: | |
if self.use_flash_attn: | |
if not self.use_flash_attn_triton: | |
query_layer, key_layer, value_layer = [rearrange(x, 's b ... -> b s ...').contiguous() | |
for x in (query_layer, key_layer, value_layer)] | |
if self.sequence_parallel: | |
context_layer = self.core_attention_flash(query_layer, key_layer, value_layer) | |
else: | |
with tensor_parallel.get_cuda_rng_tracker().fork(): | |
context_layer = self.core_attention_flash(query_layer, key_layer, value_layer) | |
if not self.use_flash_attn_triton: | |
context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous() | |
else: | |
if self.checkpoint_core_attention: | |
context_layer = self._checkpointed_attention_forward( | |
query_layer, key_layer, value_layer, attention_mask) | |
else: | |
context_layer = self.core_attention( | |
query_layer, key_layer, value_layer, attention_mask) | |
# ================= | |
# Output. [sq, b, h] | |
# ================= | |
output, bias = self.dense(context_layer) | |
return output, bias | |
def bias_dropout_add(x, bias, residual, prob, training): | |
# type: (Tensor, Optional[Tensor], Tensor, float, bool) -> Tensor | |
if bias is not None: | |
x = x + bias | |
if prob == 0: | |
out = x | |
else: | |
out = torch.nn.functional.dropout(x, p=prob, training=training) | |
out = residual + out | |
return out | |
def get_bias_dropout_add(training): | |
def _bias_dropout_add(x, bias, residual, prob): | |
return bias_dropout_add(x, bias, residual, prob, training) | |
return _bias_dropout_add | |
def bias_dropout_add_fused_train(x: torch.Tensor, | |
bias: Optional[torch.Tensor], | |
residual: torch.Tensor, | |
prob: float) -> torch.Tensor: | |
return bias_dropout_add(x, bias, residual, prob, True) | |
def bias_dropout_add_fused_inference(x: torch.Tensor, | |
bias: Optional[torch.Tensor], | |
residual: torch.Tensor, | |
prob: float) -> torch.Tensor: | |
return bias_dropout_add(x, bias, residual, prob, False) | |
class ParallelTransformerLayer(MegatronModule): | |
"""A single transformer layer. | |
Transformer layer takes input with size [s, b, h] and returns an | |
output of the same size. | |
""" | |
def __init__(self, config, | |
layer_number, layer_type=LayerType.encoder, | |
self_attn_mask_type=AttnMaskType.padding, | |
drop_path_rate=0., num_experts=1): | |
# retriever=None): | |
args = get_args() | |
super(ParallelTransformerLayer, self).__init__() | |
self.layer_number = layer_number | |
self.layer_type = layer_type | |
self.apply_residual_connection_post_layernorm \ | |
= config.apply_residual_connection_post_layernorm | |
self.bf16 = config.bf16 | |
self.fp32_residual_connection = config.fp32_residual_connection | |
# Layernorm on the input data. | |
if args.normalization == 'layernorm': | |
if get_accelerator().device_name() in ['cuda', 'hpu']: | |
self.input_layernorm = LayerNorm( | |
config.hidden_size, | |
eps=config.layernorm_epsilon, | |
no_persist_layer_norm=args.no_persist_layer_norm, | |
sequence_parallel=config.sequence_parallel, | |
apply_layernorm_1p=args.apply_layernorm_1p, | |
mem_efficient_ln=args.mem_efficient_ln) | |
else: | |
self.input_layernorm = LayerNorm( | |
config.hidden_size, | |
eps=config.layernorm_epsilon) | |
else: | |
self.input_layernorm = MixedFusedRMSNorm(config.hidden_size, | |
config.layernorm_epsilon, | |
sequence_parallel=config.sequence_parallel) | |
# Self attention. | |
self.self_attention = ParallelAttention( | |
config, | |
layer_number, | |
attention_type=AttnType.self_attn, | |
attn_mask_type=self_attn_mask_type) | |
self.hidden_dropout = config.hidden_dropout | |
self.bias_dropout_fusion = config.bias_dropout_fusion | |
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None | |
# Layernorm on the attention output | |
if args.normalization == 'layernorm': | |
if get_accelerator().device_name() in ['cuda', 'hpu']: | |
self.post_attention_layernorm = LayerNorm( | |
config.hidden_size, | |
eps=config.layernorm_epsilon, | |
no_persist_layer_norm=not config.persist_layer_norm, | |
sequence_parallel=config.sequence_parallel, | |
apply_layernorm_1p=args.apply_layernorm_1p, | |
mem_efficient_ln=args.mem_efficient_ln) | |
else: | |
self.post_attention_layernorm = LayerNorm( | |
config.hidden_size, | |
eps=config.layernorm_epsilon) | |
else: | |
self.post_attention_layernorm = MixedFusedRMSNorm(config.hidden_size, | |
config.layernorm_epsilon, | |
sequence_parallel=config.sequence_parallel) | |
# Cross attention. | |
if self.layer_type in (LayerType.decoder, | |
LayerType.retro_decoder, | |
LayerType.retro_decoder_with_retriever, | |
LayerType.retro_encoder): | |
self.inter_attention = ParallelAttention( | |
config, | |
layer_number, | |
attention_type=AttnType.cross_attn) | |
# Layernorm on the attention output. | |
if args.normalization == 'layernorm': | |
self.post_inter_attention_layernorm = LayerNorm( | |
config.hidden_size, | |
eps=config.layernorm_epsilon, | |
no_persist_layer_norm=not config.persist_layer_norm, | |
sequence_parallel=config.sequence_parallel, | |
apply_layernorm_1p=args.apply_layernorm_1p, | |
mem_efficient_ln=args.mem_efficient_ln) | |
else: | |
self.post_inter_attention_layernorm = MixedFusedRMSNorm(config.hidden_size, | |
config.layernorm_epsilon, | |
sequence_parallel=config.sequence_parallel) | |
# MLP | |
self.num_experts = num_experts | |
if args.num_experts_switch is not None: | |
self.mlp = SwitchMLP(config) # Megatron-LM's MoE | |
else: | |
if self.num_experts <= 1: # dense, not MoE | |
self.mlp = ParallelMLP(config) | |
else: # DeepSpeed's MoE | |
enable_expert_tensor_parallelism = args.enable_expert_tensor_parallelism | |
self.mlp = MoE(args.hidden_size, | |
ParallelMLP(config, | |
moe=True, | |
enable_expert_tensor_parallelism=enable_expert_tensor_parallelism), | |
num_experts=self.num_experts, | |
ep_size=args.moe_expert_parallel_size, | |
k=args.topk, | |
use_residual=(args.mlp_type == 'residual'), | |
capacity_factor=args.moe_train_capacity_factor, | |
eval_capacity_factor=args.moe_eval_capacity_factor, | |
min_capacity=args.moe_min_capacity, | |
drop_tokens=args.moe_token_dropping, use_tutel=args.use_tutel, | |
enable_expert_tensor_parallelism=enable_expert_tensor_parallelism) | |
# Set bias+dropout+add fusion grad_enable execution handler. | |
TORCH_MAJOR = int(torch.__version__.split('.')[0]) | |
TORCH_MINOR = int(torch.__version__.split('.')[1]) | |
use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10) | |
self.bias_dropout_add_exec_handler = \ | |
nullcontext if use_nvfuser else torch.enable_grad | |
if args.retro_add_retriever: | |
retro_args = get_retro_args() | |
self.retro_num_neighbors = args.retro_num_neighbors | |
self.retro_chunk_length = retro_args.retro_gpt_chunk_length | |
self.retro_retrieved_length = retro_args.retro_gpt_retrieved_length | |
# Retriever (bi-directional transformer with cross attention) | |
if layer_type == LayerType.retro_decoder_with_retriever: | |
self.retriever = ParallelTransformer( | |
config=config, | |
model_type=ModelType.retro_encoder, | |
self_attn_mask_type=AttnMaskType.padding, | |
pre_process=True, | |
post_process=False, | |
) | |
self._retriever_key = 'retriever' | |
else: | |
self.retriever = None | |
def default_decoder_cross_attention(self, | |
encoder_output, | |
enc_dec_attn_mask, | |
layernorm_input, | |
layernorm_output, | |
bias_dropout_add_func): | |
'''Cross attention for a standard encoder-decoder model.''' | |
# Attention. | |
attention_output, attention_bias = \ | |
self.inter_attention(layernorm_output, | |
enc_dec_attn_mask, | |
encoder_output=encoder_output) | |
# Residual connection. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = layernorm_input | |
if attention_bias is not None: | |
attention_bias = attention_bias.expand_as(residual) | |
# Bias-dropout-add. | |
with self.bias_dropout_add_exec_handler(): | |
layernorm_input = bias_dropout_add_func( | |
attention_output, | |
attention_bias, | |
residual, | |
self.hidden_dropout) | |
# Layer norm. | |
layernorm_output = self.post_inter_attention_layernorm(layernorm_input) | |
return layernorm_input, layernorm_output | |
def retro_encoder_cross_attention(self, | |
retriever_output, | |
layernorm_input, | |
layernorm_output, | |
bias_dropout_add_func): | |
"""Cross attention for Retro encoder. | |
Notation: | |
ns : Sequence length. | |
bs : Batch size. | |
d : Hidden size. | |
l : Number of chunks per sample (i.e., seq_length/chunk_length). | |
k : Number of neighbors. | |
r : Number of retrieved tokens (neighbors + continuation). | |
""" | |
ns, bs, d = layernorm_output.shape # [r, bs * l * k, d] | |
# Divide sequence dimension into chunks. | |
chunked_outputs = layernorm_output.reshape(self.retro_retrieved_length, | |
-1, | |
self.retro_num_neighbors, | |
d) | |
chunked_outputs_before_layer_norm = \ | |
layernorm_input.reshape(self.retro_retrieved_length, -1, | |
self.retro_num_neighbors, d) # [r, bs*l, k, d] | |
# Per-chunk attention. | |
layernorm_inputs = [] | |
layernorm_outputs = [] | |
for k in range(self.retro_num_neighbors): | |
# Attention. | |
chunked_output = chunked_outputs[:,:,k].contiguous() | |
attention_output, attention_bias = \ | |
self.inter_attention( | |
chunked_output, # Q (neighbor embedding) | |
None, | |
encoder_output=retriever_output) # K, V (hidden act) | |
# Residual connection. | |
if self.apply_residual_connection_post_layernorm: | |
residual = chunked_output | |
else: | |
residual = chunked_outputs_before_layer_norm[:,:,k] | |
# Re-enable torch grad to enable fused optimization. | |
with torch.enable_grad(): | |
layernorm_input = bias_dropout_add_func( | |
attention_output, | |
None if attention_bias is None else attention_bias.expand_as(residual), | |
residual, | |
self.hidden_dropout) | |
layernorm_inputs.append(layernorm_input) | |
# Layer norm. | |
layernorm_output = \ | |
self.post_inter_attention_layernorm(layernorm_input) | |
layernorm_outputs.append(layernorm_output) | |
# Concatenate layer norms. | |
# layernorm_input : [r, k * bs * l, d] | |
# layernorm_output : [r, k * bs * l, d] | |
layernorm_input = \ | |
torch.stack(layernorm_inputs, dim=1).reshape(ns, bs, d) | |
layernorm_output = \ | |
torch.stack(layernorm_outputs, dim=1).reshape(ns, bs, d) | |
return layernorm_input, layernorm_output | |
def retro_decoder_cross_attention(self, | |
retriever_input, | |
retriever_output, | |
retriever_attn_mask, | |
layernorm_input, | |
layernorm_output, | |
inference_params, | |
bias_dropout_add_func): | |
"""Cross attention for Retro decoder. | |
Notation: | |
ns : Sequence length. | |
bs : Batch size. | |
d : Hidden size. | |
l : Number of chunks per sample (i.e., seq_length/chunk_length). | |
m : Number of tokens per chunk. | |
k : Number of neighbors. | |
r : Number of retrieved tokens (neighbors + continuation). | |
""" | |
ns, bs, d = layernorm_output.shape | |
l = int(np.ceil(ns / self.retro_chunk_length)) | |
# Retrieve neighbors. | |
if self.layer_type == LayerType.retro_decoder_with_retriever: | |
first_ns = ns % self.retro_chunk_length | |
if first_ns > 0: | |
raise Exception("test this case.") | |
first_chunk, rest_chunk = \ | |
layernorm_output[:first_ns], layernorm_output[first_ns:] | |
first_chunk = torch.nn.functional.pad( | |
first_chunk, | |
(0, 0, 0, 0, 0, self.retro_chunk_length - first_ns), | |
'constant', | |
0) | |
chunked_output = \ | |
torch.cat((first_chunk, rest_chunk), dim=0) # [l * m, bs, d] | |
else: | |
chunked_output = layernorm_output # [l * m, bs, d] | |
chunked_output = chunked_output \ | |
.reshape(l, self.retro_chunk_length, bs, d) \ | |
.permute(1, 2, 0, 3) \ | |
.reshape(self.retro_chunk_length, bs * l, d) \ | |
.contiguous() | |
# Get Encoder Output | |
retriever_output = self.retriever( | |
hidden_states=retriever_input, | |
attention_mask=retriever_attn_mask, | |
retriever_output=chunked_output, | |
retriever_attn_mask=retriever_attn_mask, | |
inference_params=inference_params) # [r, k * bs * l , d] | |
retriever_output = retriever_output.reshape( | |
self.retro_retrieved_length * self.retro_num_neighbors, bs * l, d) # [r * k, bs * l, d] | |
# Chunks. | |
pad = (ns - 1) % self.retro_chunk_length | |
attending_chunks = layernorm_output[pad:] | |
padded_chunks = torch.nn.functional.pad( | |
attending_chunks, | |
(0, 0, 0, 0, 0, self.retro_chunk_length - 1), | |
'constant', 0) | |
padded_chunked_output = padded_chunks \ | |
.reshape(l, self.retro_chunk_length, bs, d) \ | |
.permute(1, 2, 0, 3) | |
padded_chunked_output = padded_chunked_output.reshape( | |
self.retro_chunk_length, bs * l, d).contiguous() | |
# Encoder output. | |
attention_output, attention_bias = \ | |
self.inter_attention(padded_chunked_output, | |
None, | |
encoder_output=retriever_output) | |
# Residual connection. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = layernorm_input | |
# Re-enable torch grad to enable fused optimization. | |
with torch.enable_grad(): | |
layernorm_input = bias_dropout_add_func( | |
attention_output, | |
None if attention_bias is None else attention_bias.expand_as(attention_output), | |
torch.zeros_like(attention_output), | |
self.hidden_dropout) | |
layernorm_input = layernorm_input \ | |
.reshape(self.retro_chunk_length, bs, l, d) \ | |
.permute(2, 0, 1, 3) # [l, m, bs, d] | |
layernorm_input = layernorm_input.reshape(self.retro_chunk_length * l, bs, d) | |
layernorm_input = torch.nn.functional.pad( | |
layernorm_input, | |
(0, 0, 0, 0, pad, 0), | |
'constant', 0)[:ns] # [ns, b, d] | |
layernorm_input = layernorm_input + residual | |
# Layer norm post the decoder attention | |
layernorm_output = self.post_inter_attention_layernorm(layernorm_input) | |
return retriever_output, layernorm_input, layernorm_output | |
def forward(self, hidden_states, attention_mask=None, | |
encoder_output=None, enc_dec_attn_mask=None, | |
retriever_input=None, | |
retriever_output=None, | |
retriever_attn_mask=None, | |
inference_params=None, | |
rotary_pos_emb=None): | |
# hidden_states: [s, b, h] | |
# Layer norm at the beginning of the transformer layer. | |
layernorm_output = self.input_layernorm(hidden_states) | |
# Self attention. | |
attention_output, attention_bias = \ | |
self.self_attention( | |
layernorm_output, | |
attention_mask, | |
inference_params=inference_params, | |
rotary_pos_emb=rotary_pos_emb) | |
# Residual connection. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = hidden_states | |
if self.drop_path is None: | |
# jit scripting for a nn.module (with dropout) is not | |
# trigerring the fusion kernel. For now, we use two | |
# different nn.functional routines to account for varying | |
# dropout semantics during training and inference phases. | |
if self.bias_dropout_fusion: | |
if self.training: | |
bias_dropout_add_func = bias_dropout_add_fused_train | |
else: | |
bias_dropout_add_func = bias_dropout_add_fused_inference | |
else: | |
bias_dropout_add_func = get_bias_dropout_add(self.training) | |
if attention_bias is not None: | |
attention_bias = attention_bias.expand_as(residual) | |
with self.bias_dropout_add_exec_handler(): | |
layernorm_input = bias_dropout_add_func( | |
attention_output, | |
attention_bias, | |
residual, | |
self.hidden_dropout) | |
else: | |
out = torch.nn.functional.dropout(attention_output + attention_bias, | |
p=self.hidden_dropout, | |
training=self.training) | |
layernorm_input = residual + self.drop_path(out) | |
# Layer norm post the self attention. | |
layernorm_output = self.post_attention_layernorm(layernorm_input) | |
# Cross attention. | |
if self.layer_type == LayerType.encoder: | |
pass | |
elif self.layer_type == LayerType.decoder: | |
layernorm_input, layernorm_output = \ | |
self.default_decoder_cross_attention( | |
encoder_output, | |
enc_dec_attn_mask, | |
layernorm_input, | |
layernorm_output, | |
bias_dropout_add_func) | |
elif self.layer_type == LayerType.retro_encoder: | |
layernorm_input, layernorm_output = \ | |
self.retro_encoder_cross_attention( | |
retriever_output, | |
layernorm_input, | |
layernorm_output, | |
bias_dropout_add_func) | |
elif self.layer_type in (LayerType.retro_decoder, | |
LayerType.retro_decoder_with_retriever): | |
retriever_output, layernorm_input, layernorm_output = \ | |
self.retro_decoder_cross_attention( | |
retriever_input, | |
retriever_output, | |
retriever_attn_mask, | |
layernorm_input, | |
layernorm_output, | |
inference_params, | |
bias_dropout_add_func) | |
else: | |
raise Exception("Unsupported layer type, '%s'." % | |
self.layer_type.name) | |
# MLP. | |
moe_loss = torch.tensor(0.0, device=layernorm_output.device, dtype=layernorm_output.dtype) | |
mlp_bias = torch.tensor(0.0, device=layernorm_output.device, dtype=layernorm_output.dtype) | |
if self.num_experts == 1: | |
mlp_output, mlp_bias = self.mlp(layernorm_output) | |
else: | |
mlp_output, moe_loss, _ = self.mlp(layernorm_output) | |
# Second residual connection. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = layernorm_input | |
if self.drop_path is None: | |
if mlp_bias is not None: | |
mlp_bias = mlp_bias.expand_as(residual) | |
with self.bias_dropout_add_exec_handler(): | |
output = bias_dropout_add_func( | |
mlp_output, | |
mlp_bias, | |
residual, | |
self.hidden_dropout) | |
# Jit compiled function creates 'view' tensor. This tensor | |
# potentially gets saved in the MPU checkpoint function context, | |
# which rejects view tensors. While making a viewless tensor here | |
# won't result in memory savings (like the data loader, or | |
# p2p_communication), it serves to document the origin of this | |
# 'view' tensor. | |
output = core.utils.make_viewless_tensor(inp = output, | |
requires_grad = output.requires_grad, | |
keep_graph = True) | |
else: | |
if mlp_bias is not None: | |
mlp_output = mlp_output + mlp_bias | |
out = torch.nn.functional.dropout(mlp_output, | |
p=self.hidden_dropout, | |
training=self.training) | |
output = residual + self.drop_path(out) | |
if self.layer_type == LayerType.retro_decoder_with_retriever: | |
return output, retriever_output, moe_loss | |
else: | |
return output, moe_loss | |
class ParallelTransformerLayerPipe(ParallelTransformerLayer): | |
"""Extends ParallelTransformerLayer to forward attention_mask through the pipeline. | |
Forward has two usages that affect attention mask communication: | |
1) forward((input, attn_mask) , **kwargs) -> (output, mask) | |
When the attention mask is provided as the second positional | |
argument, typical pipeline behavior is used and both the output | |
*and* mask are returned in a tuple. This tuple is then forwarded | |
to the next stage in the pipeline. | |
This version is useful if masks are dynamic. | |
2) forward(input, **kwargs) -> output | |
When the mask is static over all samples, it is advantageous to | |
cache the mask and avoid communicating it. | |
If no mask is provided, the module will query `self._args.attn_mask` | |
for the mask and only return `super().forward(...)` | |
""" | |
def forward(self, inputs, **kwargs): | |
assert torch.is_tensor(inputs) or isinstance(inputs, tuple) | |
if not hasattr(self, '_args'): | |
self._args = get_args() | |
rotary_pos_emb = self._args.rotary_pos_emb if self._args.use_rotary_position_embeddings else None | |
if torch.is_tensor(inputs) or len(inputs) == 1: | |
# No attention mask forwarded, search for args.attn_mask | |
hidden_states, attention_mask = inputs, self._args.attn_mask | |
# HACK: currently MoE model does not support pipeline parallel, so | |
# here we just ignore the moe_loss returned by forward() | |
return super().forward(hidden_states, attention_mask, **kwargs, rotary_pos_emb=rotary_pos_emb)[0] | |
elif len(inputs) == 2: | |
# Attention mask is an activation. | |
hidden_states, attention_mask = inputs[0], inputs[1] | |
# HACK: currently MoE model does not support pipeline parallel, so | |
# here we just ignore the moe_loss returned by forward() | |
return super().forward(*inputs, **kwargs, rotary_pos_emb=rotary_pos_emb)[0], attention_mask | |
else: | |
raise RuntimeError('Received more inputs than understood.') | |
class NoopTransformerLayer(MegatronModule): | |
"""A single 'no-op' transformer layer. | |
The sole purpose of this layer is for when a standalone embedding layer | |
is used (i.e., args.standalone_embedding_stage == True). In this case, | |
zero transformer layers are assigned when pipeline rank == 0. Additionally, | |
when virtual pipeline rank >= 1, zero total model parameters are created | |
(virtual rank 0 contains the input embedding). This results in the model's | |
input and output tensors being the same, which causes an error when | |
performing certain memory optimiations on the output tensor (e.g., | |
deallocating it). Thus, this layer disconnects the input from the output | |
via a clone. Since ranks containing a no-op layer are generally under- | |
utilized (both compute and memory), there's no worry of any performance | |
degredation. | |
""" | |
def __init__(self, layer_number): | |
super().__init__() | |
self.layer_number = layer_number | |
def forward(self, hidden_states, attention_mask, | |
encoder_output=None, enc_dec_attn_mask=None, | |
inference_params=None): | |
return hidden_states.clone() | |
def _get_num_layers(args, model_type, is_decoder=False): | |
"""Compute the number of transformer layers resident on the current rank.""" | |
is_encoder_and_decoder_model = (model_type == ModelType.encoder_and_decoder) | |
if model_type == ModelType.retro_encoder: | |
num_layers = args.retro_encoder_layers | |
elif parallel_state.get_pipeline_model_parallel_world_size() > 1: | |
if is_encoder_and_decoder_model: | |
assert args.pipeline_model_parallel_split_rank is not None | |
# When a standalone embedding stage is used, a rank is taken from | |
# the encoder's ranks, to be used for the encoder's embedding | |
# layer. This way, the rank referenced by the 'split rank' remains | |
# the same whether or not a standalone embedding stage is used. | |
num_ranks_in_encoder = ( | |
args.pipeline_model_parallel_split_rank - 1 | |
if args.standalone_embedding_stage else | |
args.pipeline_model_parallel_split_rank | |
) | |
num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder | |
assert args.encoder_num_layers % num_ranks_in_encoder == 0, \ | |
'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder) | |
assert args.decoder_num_layers % num_ranks_in_decoder == 0, \ | |
'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder) | |
if parallel_state.is_pipeline_stage_before_split(): | |
num_layers = ( | |
0 | |
if args.standalone_embedding_stage | |
and parallel_state.get_pipeline_model_parallel_rank() == 0 else | |
args.encoder_num_layers // num_ranks_in_encoder | |
) | |
else: | |
num_layers = args.decoder_num_layers // num_ranks_in_decoder | |
else: | |
assert args.num_layers == args.encoder_num_layers | |
assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \ | |
'num_layers must be divisible by transformer_pipeline_model_parallel_size' | |
# When a standalone embedding stage is used, all transformer layers | |
# are divided among pipeline rank >= 1, while on pipeline rank 0, | |
# ranks either contain the input embedding layer (virtual pp rank 0), | |
# or no layers at all (virtual pp rank >= 1). | |
num_layers = ( | |
0 | |
if args.standalone_embedding_stage | |
and parallel_state.get_pipeline_model_parallel_rank() == 0 else | |
args.num_layers // args.transformer_pipeline_model_parallel_size | |
) | |
else: | |
if not is_decoder: | |
num_layers = args.encoder_num_layers | |
else: | |
num_layers = args.decoder_num_layers | |
return num_layers | |
def _get_layer_type(model_type, default_layer_type, retro_layer_numbers, | |
layer_number): | |
args = get_args() | |
if args.retro_add_retriever and layer_number in retro_layer_numbers: | |
if model_type == ModelType.retro_decoder: | |
return LayerType.retro_decoder_with_retriever \ | |
if layer_number == retro_layer_numbers[0] \ | |
else LayerType.retro_decoder | |
elif model_type == ModelType.retro_encoder: | |
return LayerType.retro_encoder | |
else: | |
raise Exception("Unsupported model type, '%s'." % model_type) | |
else: | |
return default_layer_type | |
class ParallelTransformer(MegatronModule): | |
"""Transformer class.""" | |
def __init__(self, config, | |
model_type, layer_type=LayerType.encoder, | |
self_attn_mask_type=AttnMaskType.padding, | |
post_layer_norm=True, | |
pre_process=True, | |
post_process=True, | |
drop_path_rate=0.0, | |
num_experts=[1]): | |
super(ParallelTransformer, self).__init__() | |
args = get_args() | |
self.layer_type = layer_type | |
self.model_type = model_type | |
self.bf16 = config.bf16 | |
self.fp32_residual_connection = config.fp32_residual_connection | |
self.post_layer_norm = post_layer_norm | |
self.pre_process = pre_process | |
self.post_process = post_process | |
self.input_tensor = None | |
self.drop_path_rate = drop_path_rate | |
self.transformer_impl = args.transformer_impl | |
self.retro_add_retriever = args.retro_add_retriever | |
self.ds_inference = args.ds_inference | |
self.device_name = get_accelerator().device_name() | |
# Store activation checkpoiting flag. | |
self.checkpoint_activations = args.checkpoint_activations | |
self.checkpoint_num_layers = args.checkpoint_num_layers | |
self.recompute_granularity = config.recompute_granularity | |
self.recompute_method = config.recompute_method | |
self.recompute_num_layers = config.recompute_num_layers | |
self.distribute_saved_activations = \ | |
config.distribute_saved_activations and not config.sequence_parallel | |
self.sequence_parallel = config.sequence_parallel | |
self.use_fp8 = False | |
# Transformer Engine Init. | |
self.transformer_engine_rope_available = False | |
if self.transformer_impl == 'transformer_engine' and self.device_name == 'cuda': | |
global transformer_engine | |
import transformer_engine | |
from importlib.metadata import version | |
from pkg_resources import packaging | |
te_version = packaging.version.Version(version("transformer-engine")) | |
if te_version >= packaging.version.Version("0.10.0"): | |
self.transformer_engine_rope_available = True | |
del version, packaging | |
self.use_fp8 = args.fp8_e4m3 or args.fp8_hybrid | |
self.fp8_recipe = None | |
self.fp8_group = None | |
if self.use_fp8: | |
self.fp8_group = parallel_state.get_data_parallel_group() | |
if args.fp8_e4m3: | |
fp8_format = transformer_engine.common.recipe.Format.E4M3 | |
elif args.fp8_hybrid: | |
fp8_format = transformer_engine.common.recipe.Format.HYBRID | |
self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling( | |
margin=args.fp8_margin, | |
interval=args.fp8_interval, | |
fp8_format=fp8_format, | |
amax_history_len=args.fp8_amax_history_len, | |
amax_compute_algo=args.fp8_amax_compute_algo, | |
override_linear_precision=(False, False, not args.fp8_wgrad), | |
) | |
self.num_microbatches_in_previous_step = -1 | |
self.microbatch_count = 0 | |
self.checkpoint_core_attention = config.recompute_granularity == 'selective' | |
# Number of layers. | |
self.num_layers = _get_num_layers(args, model_type, | |
layer_type==LayerType.decoder) | |
self.drop_path_rates = [ | |
rate.item() for rate in | |
torch.linspace(0, self.drop_path_rate, config.num_layers)] | |
self.retro_layer_numbers = None | |
if model_type == ModelType.retro_decoder: | |
retro_layer_start = 6 if config.num_layers <= 15 else 9 | |
self.retro_layer_numbers = \ | |
np.arange(retro_layer_start, args.num_layers + 1, 3).tolist() | |
if model_type == ModelType.retro_encoder: | |
self.retro_layer_numbers = [1] | |
# Transformer layers. | |
if args.retro_add_retriever: | |
assert self.recompute_granularity != 'full', \ | |
"Full recompute not supported for Retro." | |
assert args.transformer_impl == 'local', \ | |
"Transformer engine does not support Retro layers." | |
def build_layer(layer_number, n_e): | |
if args.transformer_impl == 'local' or self.device_name == 'hpu': | |
current_layer_type = _get_layer_type( | |
model_type, layer_type, self.retro_layer_numbers, | |
layer_number) | |
return ParallelTransformerLayer( | |
config, | |
layer_number, | |
layer_type=current_layer_type, | |
self_attn_mask_type=self_attn_mask_type, | |
drop_path_rate=self.drop_path_rates[layer_number - 1], | |
num_experts=n_e) | |
else: | |
assert config.num_attention_heads == config.num_key_value_heads, \ | |
'Transformer_engine does not support GQA' | |
return transformer_engine.pytorch.TransformerLayer( | |
config.hidden_size, | |
config.ffn_hidden_size, | |
config.num_attention_heads, | |
layernorm_epsilon=config.layernorm_epsilon, | |
hidden_dropout=config.hidden_dropout, | |
attention_dropout=config.attention_dropout, | |
init_method=config.init_method, | |
output_layer_init_method=config.output_layer_init_method, | |
layer_number=layer_number, | |
kv_channels=config.kv_channels, | |
self_attn_mask_type=self_attn_mask_type.name, | |
tp_group=parallel_state.get_tensor_model_parallel_group(), | |
get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker, | |
fuse_wgrad_accumulation=config.gradient_accumulation_fusion, | |
apply_query_key_layer_scaling=config.apply_query_key_layer_scaling, | |
attention_softmax_in_fp32=config.attention_softmax_in_fp32, | |
seq_length=args.seq_length, | |
micro_batch_size=args.micro_batch_size, | |
sequence_parallel=config.sequence_parallel, | |
params_dtype=config.params_dtype, | |
apply_residual_connection_post_layernorm=config.apply_residual_connection_post_layernorm, | |
output_layernorm=False, | |
layer_type="encoder", | |
drop_path_rate=self.drop_path_rates[layer_number - 1], | |
set_parallel_mode=True, | |
fuse_qkv_params=True) | |
if config.virtual_pipeline_model_parallel_size is not None: | |
assert config.num_layers % config.virtual_pipeline_model_parallel_size == 0, \ | |
'num_layers_per_stage must be divisible by ' \ | |
'virtual_pipeline_model_parallel_size' | |
assert args.model_type != ModelType.encoder_and_decoder | |
# Number of layers in each model chunk is the number of layers in the stage, | |
# divided by the number of model chunks in a stage. | |
self.num_layers = self.num_layers // config.virtual_pipeline_model_parallel_size | |
# With 8 layers, 2 stages, and 4 model chunks, we want an assignment of | |
# layers to stages like (each list is a model chunk): | |
# Stage 0: [0] [2] [4] [6] | |
# Stage 1: [1] [3] [5] [7] | |
# With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of | |
# layers to stages like (each list is a model chunk): | |
# Stage 0: [0, 1] [4, 5] | |
# Stage 1: [2, 3] [6, 7] | |
offset = parallel_state.get_virtual_pipeline_model_parallel_rank() * ( | |
config.num_layers // config.virtual_pipeline_model_parallel_size) + \ | |
(parallel_state.get_pipeline_model_parallel_rank() * self.num_layers) | |
else: | |
# Each stage gets a contiguous set of layers. | |
if args.model_type == ModelType.encoder_and_decoder and \ | |
parallel_state.get_pipeline_model_parallel_world_size() > 1: | |
pipeline_rank = parallel_state.get_pipeline_model_parallel_rank() | |
if layer_type == LayerType.encoder: | |
offset = pipeline_rank * self.num_layers | |
else: | |
num_ranks_in_enc = args.pipeline_model_parallel_split_rank | |
offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers | |
else: | |
offset = parallel_state.get_pipeline_model_parallel_rank() * self.num_layers | |
if self.num_layers == 0: | |
# When a standalone embedding stage is used (e.g., | |
# args.standalone_embedding_stage == True), virtual pipeline ranks | |
# on pipeline rank 0 will have zero transformer layers assigned to | |
# them. This results in the model's input and output tensors to be | |
# the same, which will cause failure for certain output tensor | |
# optimizations (e.g., pipeline output deallocation). To remedy | |
# this, we assign a 'no-op' layer on these ranks, which will | |
# disconnect the input tensor from the output tensor. | |
self.num_layers = 1 | |
self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ]) | |
else: | |
assert len(num_experts) == 1 or len(num_experts) == args.num_layers // args.expert_interval, \ | |
'num_experts must be either a single value or a list of the same length as the number of MoE layers' | |
# Create the list of MoE experts | |
if len(num_experts) == 1: | |
num_experts = num_experts * (args.num_layers // args.expert_interval) | |
# Build the layers | |
self.layers = [] | |
for i in range(self.num_layers): | |
layer_num = i + 1 + offset | |
if layer_num % args.expert_interval == 0: | |
n_e = num_experts[(layer_num-1) // args.expert_interval] | |
else: | |
n_e = 1 | |
self.layers.append(build_layer(layer_num, n_e)) | |
self.layers = torch.nn.ModuleList(self.layers) | |
# Update dropout rate for Retro encoder. | |
if model_type == ModelType.retro_encoder: | |
for layer in self.layers: | |
if layer.self_attention.use_flash_attn: | |
layer.self_attention.core_attention_flash.dropout_p = \ | |
torch.nn.Dropout(args.retro_encoder_attention_dropout) | |
else: | |
layer.self_attention.core_attention.attention_dropout.p =\ | |
args.retro_encoder_attention_dropout | |
layer.hidden_dropout = args.retro_encoder_hidden_dropout | |
if self.post_process and self.post_layer_norm: | |
# Final layer norm before output. | |
if args.normalization == 'layernorm': | |
if get_accelerator().device_name() in ['cuda', 'hpu']: | |
self.final_layernorm = LayerNorm( | |
config.hidden_size, | |
eps=config.layernorm_epsilon, | |
no_persist_layer_norm=args.no_persist_layer_norm, | |
sequence_parallel=config.sequence_parallel, | |
apply_layernorm_1p=args.apply_layernorm_1p, | |
mem_efficient_ln=args.mem_efficient_ln) | |
else: | |
self.final_layernorm = LayerNorm( | |
config.hidden_size, | |
eps=config.layernorm_epsilon) | |
else: | |
self.final_layernorm = MixedFusedRMSNorm(config.hidden_size, | |
config.layernorm_epsilon, | |
sequence_parallel=config.sequence_parallel) | |
def _get_layer(self, layer_number): | |
return self.layers[layer_number] | |
def _checkpointed_forward(self, hidden_states, attention_mask, | |
encoder_output, enc_dec_attn_mask, | |
rotary_pos_emb, is_first_microbatch): | |
args = get_args() | |
"""Forward method with activation checkpointing.""" | |
def custom(start, end): | |
def custom_forward(*args, **kwargs): | |
x_, *args = args | |
moe_losses = [] | |
for index in range(start, end): | |
layer = self._get_layer(index) | |
output = layer(x_, *args, **kwargs) | |
if isinstance(output, tuple): | |
x_, moe_loss = output | |
else: | |
x_ = output | |
moe_loss = torch.tensor(0.0, device=x_.device, dtype=x_.dtype, requires_grad=True) | |
moe_losses.append(moe_loss) | |
return (x_, *moe_losses) | |
return custom_forward | |
if args.deepspeed and args.deepspeed_activation_checkpointing: | |
moe_losses = [] | |
# Make sure memory is freed. | |
tensor_parallel.reset_checkpointed_activations_memory_buffer() | |
l = 0 | |
while l < self.num_layers: | |
hidden_states, *local_moe_losses = tensor_parallel.checkpoint( | |
custom(l, l + self.checkpoint_num_layers), False, | |
hidden_states, attention_mask, encoder_output, enc_dec_attn_mask, | |
None, None, None, None, rotary_pos_emb) | |
moe_losses.extend(local_moe_losses) | |
l += self.checkpoint_num_layers | |
return hidden_states, moe_losses | |
else: | |
moe_losses = [] | |
te_forward_kwargs = {} | |
if self.transformer_impl == 'transformer_engine': | |
te_forward_kwargs['is_first_microbatch'] = is_first_microbatch | |
if self.transformer_engine_rope_available: | |
te_forward_kwargs['rotary_pos_emb'] = rotary_pos_emb | |
if self.recompute_method == 'uniform': | |
# Uniformly divide the total number of Transformer layers and | |
# checkpoint the input activation of each divided chunk. | |
# A method to further reduce memory usage reducing checkpoints. | |
l = 0 | |
while l < self.num_layers: | |
if self.transformer_impl == 'transformer_engine': | |
hidden_states, *local_moe_losses = transformer_engine.pytorch.distributed.checkpoint( | |
custom(l, l + self.recompute_num_layers), | |
self.distribute_saved_activations, | |
tensor_parallel.get_cuda_rng_tracker, | |
mpu.get_tensor_model_parallel_group(), | |
hidden_states, attention_mask, encoder_output, | |
enc_dec_attn_mask, **te_forward_kwargs) | |
else: | |
hidden_states, *local_moe_losses = tensor_parallel.checkpoint( | |
custom(l, l + self.recompute_num_layers), | |
self.distribute_saved_activations, | |
hidden_states, attention_mask, | |
encoder_output, enc_dec_attn_mask, | |
None, None, None, None, rotary_pos_emb) | |
moe_losses.extend(local_moe_losses) | |
l += self.recompute_num_layers | |
elif self.recompute_method == 'block': | |
# Checkpoint the input activation of only a set number of individual | |
# Transformer layers and skip the rest. | |
# A method fully use the device memory removing redundant re-computation. | |
for l in range(self.num_layers): | |
if l < self.recompute_num_layers: | |
if self.transformer_impl == 'transformer_engine': | |
hidden_states, *local_moe_losses = transformer_engine.pytorch.distributed.checkpoint( | |
custom(l, l + 1), | |
self.distribute_saved_activations, | |
tensor_parallel.get_cuda_rng_tracker, | |
mpu.get_tensor_model_parallel_group(), | |
hidden_states, attention_mask, encoder_output, | |
enc_dec_attn_mask, **te_forward_kwargs) | |
else: | |
hidden_states, *local_moe_losses = tensor_parallel.checkpoint( | |
custom(l, l + 1), | |
self.distribute_saved_activations, | |
hidden_states, attention_mask, | |
encoder_output, enc_dec_attn_mask, | |
None, None, None, None, rotary_pos_emb) | |
else: | |
if self.transformer_impl == 'transformer_engine': | |
hidden_states, *local_moe_losses = custom(l, l + 1)( | |
hidden_states, attention_mask, encoder_output, | |
enc_dec_attn_mask, **te_forward_kwargs) | |
else: | |
hidden_states, *local_moe_losses = custom(l, l + 1)( | |
hidden_states, attention_mask, | |
encoder_output, enc_dec_attn_mask, | |
None, None, None, None, rotary_pos_emb) | |
moe_losses.extend(local_moe_losses) | |
else: | |
raise ValueError("Invalid activation recompute method.") | |
return hidden_states, moe_losses | |
def set_input_tensor(self, input_tensor): | |
"""Set input tensor to be used instead of forward()'s input. | |
When doing pipeline parallelism the input from the previous | |
stage comes from communication, not from the input, so the | |
model's forward_step_func won't have it. This function is thus | |
used by internal code to bypass the input provided by the | |
forward_step_func""" | |
self.input_tensor = input_tensor | |
def forward(self, hidden_states, attention_mask, | |
encoder_output=None, enc_dec_attn_mask=None, | |
retriever_input=None, | |
retriever_output=None, | |
retriever_attn_mask=None, | |
inference_params=None, | |
rotary_pos_emb=None): | |
# hidden_states: [s, b, h] | |
# Checks. | |
if inference_params: | |
assert self.recompute_granularity is None, \ | |
'inference does not work with activation checkpointing' | |
# TODO: Below old DeepSpeed code are commented because it's unsure whether | |
# it is still relevant. | |
# # Reza's note: DeepSpeed inference does not support transposes | |
# if not self.ds_inference: | |
# if self.pre_process: | |
# # Data format change to avoid explicit tranposes : [b s h] --> [s b h]. | |
# # If the input flag for fp32 residual connection is set, convert for float. | |
# if self.fp32_residual_connection: | |
# hidden_states = hidden_states.transpose(0, 1).contiguous().float() | |
# # Otherwise, leave it as is. | |
# else: | |
# hidden_states = hidden_states.transpose(0, 1).contiguous() | |
# else: | |
# # See set_input_tensor() | |
# hidden_states = self.input_tensor | |
# if encoder_output is not None: | |
# encoder_output = encoder_output.transpose(0, 1).contiguous() | |
if not self.pre_process: | |
# See set_input_tensor() | |
hidden_states = self.input_tensor | |
# Viewless tensor. | |
# - We only need to create a viewless tensor in the case of micro batch | |
# size (mbs) == 1, since in this case, 'hidden_states.transpose()' | |
# above creates a view tensor, and '.contiguous()' is a pass-through. | |
# For mbs >= 2, '.contiguous()' creates a new tensor, eliminating | |
# the need to make it viewless. | |
# | |
# However, we don't explicitly check mbs == 1 here because | |
# make_viewless_tensor() has negligible overhead when its input | |
# is already viewless. | |
# | |
# - For the 'else' case above, calling make_viewless_tensor() here is | |
# likely redundant, since p2p_communication.py (likely originator) | |
# already creates viewless tensors. That said, make_viewless_tensor() | |
# is called here to be future-proof and corner-case-proof. | |
hidden_states = core.utils.make_viewless_tensor( | |
hidden_states, | |
requires_grad=True, | |
keep_graph=True, | |
) | |
# RNG context. | |
if self.sequence_parallel: | |
rng_context = tensor_parallel.get_cuda_rng_tracker().fork() | |
else: | |
rng_context = nullcontext() | |
# Forward layers. | |
with rng_context: | |
# The fp8_autocast context manager is a no-op when enabled=True | |
# The if...else serves to short circuit name resolution for fp8_autocast | |
with transformer_engine.pytorch.fp8_autocast( | |
enabled=self.use_fp8, | |
fp8_recipe=self.fp8_recipe, | |
fp8_group=self.fp8_group | |
) if self.use_fp8 else nullcontext(): | |
# Determine if the current iteration is first microbatch | |
if self.num_microbatches_in_previous_step != get_num_microbatches(): | |
self.microbatch_count = 0 # Reset count on new batch size rampup interval | |
self.num_microbatches_in_previous_step = get_num_microbatches() | |
is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0 | |
# Forward pass. | |
moe_losses = [] | |
if self.checkpoint_activations: | |
hidden_states, moe_losses = self._checkpointed_forward(hidden_states, | |
attention_mask, | |
encoder_output, | |
enc_dec_attn_mask, | |
rotary_pos_emb, | |
is_first_microbatch) | |
elif self.recompute_granularity == 'full': | |
hidden_states, moe_losses = self._checkpointed_forward(hidden_states, | |
attention_mask, | |
encoder_output, | |
enc_dec_attn_mask, | |
rotary_pos_emb, | |
is_first_microbatch) | |
else: | |
forward_kwargs = { | |
'encoder_output': encoder_output, | |
'enc_dec_attn_mask': enc_dec_attn_mask, | |
'inference_params': inference_params, | |
} | |
if self.transformer_impl == 'transformer_engine': | |
forward_kwargs['is_first_microbatch'] = is_first_microbatch | |
forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention | |
if self.transformer_engine_rope_available: | |
forward_kwargs['rotary_pos_emb'] = rotary_pos_emb | |
else: | |
forward_kwargs['rotary_pos_emb'] = rotary_pos_emb | |
forward_kwargs['retriever_input'] = retriever_input | |
forward_kwargs['retriever_output'] = retriever_output | |
forward_kwargs['retriever_attn_mask'] = retriever_attn_mask | |
for index in range(self.num_layers): | |
layer = self._get_layer(index) | |
hidden_states = layer( | |
hidden_states, | |
attention_mask, | |
**forward_kwargs) | |
# First Retro decoder layer returns both hidden_states | |
# and retriever_output. Make retriever_output available | |
# to subsequence Retro layers. | |
if isinstance(hidden_states, tuple): | |
assert (len(hidden_states) == 2 or len(hidden_states) == 3) | |
if len(hidden_states) == 2: | |
if not self.ds_inference: | |
hidden_states, moe_loss = hidden_states | |
moe_losses.append(moe_loss) | |
else: | |
forward_kwargs["retriever_output"] = hidden_states[1] | |
if not self.ds_inference: | |
hidden_states, _, moe_loss = hidden_states | |
moe_losses.append(moe_loss) | |
# Skip counter update for eval and activation checkpointing | |
if torch.is_grad_enabled() and self.training: | |
self.microbatch_count += 1 | |
# Final layer norm. | |
if self.post_process and self.post_layer_norm: | |
# TODO: Below old DeepSpeed code are commented because it's unsure whether | |
# it is still relevant. | |
# if not self.ds_inference: | |
# # Reverting data format change [s b h] --> [b s h]. | |
# hidden_states = hidden_states.transpose(0, 1).contiguous() | |
hidden_states = self.final_layernorm(hidden_states) | |
return (hidden_states, *moe_losses) | |
class LMHeadPipe(MegatronModule): | |
""" | |
Arguments: | |
vocab_size: size of vocabulary. | |
hidden_size: hidden size | |
gather_output: wether output logits being gathered or not. | |
init_method: init method for weight initialization | |
config: | |
""" | |
def __init__(self, hidden_size, vocab_size, config): | |
args = get_args() | |
super(LMHeadPipe, self).__init__() | |
self.lm_head = tensor_parallel.ColumnParallelLinear(input_size=hidden_size, | |
output_size=vocab_size, | |
bias=False, | |
config=config, | |
init_method=config.init_method,) | |
def forward(self, inputs, **kwargs): | |
assert torch.is_tensor(inputs) or isinstance(inputs, tuple) | |
if isinstance(inputs, tuple): | |
hidden_states = inputs[0] | |
else: | |
hidden_states = inputs | |
if not hasattr(self, '_args'): | |
self._args = get_args() | |
if hasattr(self._args, 'attn_mask'): | |
attention_mask = None | |
else: | |
attention_mask = inputs[1] | |
logits, _ = self.lm_head(hidden_states) | |
# If cmd args has attn_mask, we don't forward it as an activation. | |
if hasattr(self._args, 'attn_mask'): | |
return logits | |
else: | |
return logits, attention_mask | |