peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/mpu
/tests
/test_cross_entropy.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
from commons import set_random_seed | |
from commons import IdentityLayer | |
from commons import print_separator | |
from commons import initialize_distributed | |
from mpu.cross_entropy import vocab_parallel_cross_entropy | |
import mpu | |
import torch.nn.functional as F | |
import torch | |
import random | |
import sys | |
from deepspeed.accelerator import get_accelerator | |
sys.path.append("../..") | |
def torch_cross_entropy(batch_size, seq_length, vocab_size, | |
logits_scale, seed): | |
set_random_seed(seed) | |
identity = IdentityLayer((batch_size, seq_length, vocab_size), | |
scale=logits_scale).to(get_accelerator().device_name()) | |
logits = identity() | |
target = get_accelerator().LongTensor( | |
size=(batch_size, seq_length)).random_(0, vocab_size) | |
loss = F.cross_entropy(logits.view(-1, logits.size()[-1]), | |
target.view(-1), | |
reduction='none').view_as(target).mean() | |
loss.backward() | |
return loss, identity.weight.grad | |
def mpu_cross_entropy(batch_size, seq_length, vocab_size, | |
logits_scale, seed): | |
set_random_seed(seed) | |
identity = IdentityLayer((batch_size, seq_length, vocab_size), | |
scale=logits_scale).to(get_accelerator().device_name()) | |
logits = identity() | |
logits_parallel = mpu.scatter_to_tensor_model_parallel_region(logits) | |
target = get_accelerator().LongTensor( | |
size=(batch_size, seq_length)).random_(0, vocab_size) | |
loss = vocab_parallel_cross_entropy(logits_parallel, target).mean() | |
loss.backward() | |
return loss, identity.weight.grad | |
def test_cross_entropy(tensor_model_parallel_size): | |
if torch.distributed.get_rank() == 0: | |
print('> testing cross entropy with model parallel size {} ...'. | |
format(tensor_model_parallel_size)) | |
mpu.initialize_model_parallel(tensor_model_parallel_size) | |
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() | |
batch_size = 13 | |
seq_length = 17 | |
vocab_size_per_partition = 11 | |
logits_scale = 1000.0 | |
vocab_size = vocab_size_per_partition * tensor_model_parallel_size | |
seed = 1234 | |
loss_torch, grad_torch = torch_cross_entropy(batch_size, seq_length, | |
vocab_size, logits_scale, | |
seed) | |
loss_mpu, grad_mpu = mpu_cross_entropy(batch_size, seq_length, | |
vocab_size, logits_scale, | |
seed) | |
error = loss_torch.sub_(loss_mpu).abs().max() | |
print(' max error in loss on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
error = grad_torch.sub_(grad_mpu).abs().max() | |
print(' max error in grad on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
# Reset groups | |
mpu.destroy_tensor_model_parallel() | |
torch.distributed.barrier() | |
if torch.distributed.get_rank() == 0: | |
print('>> passed the test :-)') | |
if __name__ == '__main__': | |
initialize_distributed() | |
world_size = torch.distributed.get_world_size() | |
tensor_model_parallel_size = 1 | |
while tensor_model_parallel_size <= world_size: | |
print_separator('test cross entropy') | |
test_cross_entropy(tensor_model_parallel_size) | |
tensor_model_parallel_size *= 2 | |