peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/mpu
/tests
/test_data.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
from commons import print_separator | |
from commons import initialize_distributed | |
from deepspeed.accelerator import get_accelerator | |
from mpu import data as data_utils | |
import mpu | |
import torch | |
import functools | |
import operator | |
import sys | |
sys.path.append("../..") | |
def test_broadcast_data(tensor_model_parallel_size): | |
if torch.distributed.get_rank() == 0: | |
print('> testing broadcast_data with model parallel size {} ...'. | |
format(tensor_model_parallel_size)) | |
mpu.initialize_model_parallel(tensor_model_parallel_size) | |
torch.manual_seed(1234 + mpu.get_data_parallel_rank()) | |
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() | |
key_size_t = {'key1': [7, 11], | |
'key2': [8, 2, 1], | |
'key3': [13], | |
'key4': [5, 1, 2], | |
'key5': [5, 12]} | |
keys = list(key_size_t.keys()) | |
data = {} | |
data_t = {} | |
for key in key_size_t: | |
data[key] = torch.LongTensor(size=key_size_t[key]).random_(0, 1000) | |
data_t[key] = data[key].clone() | |
data['keyX'] = torch.FloatTensor(size=(5, )).random_(0, 1000) | |
data_t['keyX'] = data['keyX'].clone() | |
if mpu.get_tensor_model_parallel_rank() != 0: | |
data = None | |
data_utils._check_data_types(keys, data_t, torch.int64) | |
key_size, key_numel, \ | |
total_numel = data_utils._build_key_size_numel_dictionaries(keys, data) | |
for key in keys: | |
assert key_size[key] == key_size_t[key] | |
total_numel_t = 0 | |
for key in keys: | |
target_size = functools.reduce(operator.mul, key_size_t[key], 1) | |
assert key_numel[key] == target_size | |
total_numel_t += target_size | |
assert total_numel == total_numel_t | |
data_b = data_utils.broadcast_data(keys, data, torch.int64) | |
for key in keys: | |
tensor = data_t[key].to(get_accelerator().device_name()) | |
assert data_b[key].sub(tensor).abs().max() == 0 | |
# Reset groups | |
mpu.destroy_tensor_model_parallel() | |
torch.distributed.barrier() | |
if torch.distributed.get_rank() == 0: | |
print('>> passed the test :-)') | |
if __name__ == '__main__': | |
initialize_distributed() | |
world_size = torch.distributed.get_world_size() | |
tensor_model_parallel_size = 1 | |
while tensor_model_parallel_size <= world_size: | |
print_separator('test test broadcast data') | |
test_broadcast_data(tensor_model_parallel_size) | |
tensor_model_parallel_size *= 2 | |