peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/mpu
/tests
/test_layers.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
from mpu import layers | |
from commons import set_random_seed | |
from commons import print_separator | |
from commons import initialize_distributed | |
import mpu | |
from torch.nn.parameter import Parameter | |
import torch.nn.init as init | |
import torch | |
import random | |
import sys | |
sys.path.append("../..") | |
device_name = get_accelerator().device_name() | |
def test_parallel_embedding(tensor_model_parallel_size): | |
if torch.distributed.get_rank() == 0: | |
print('> testing parallel embedding with model parallel size {} ...'. | |
format(tensor_model_parallel_size)) | |
mpu.initialize_model_parallel(tensor_model_parallel_size) | |
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() | |
batch_size = 17 | |
seq_length = 23 | |
vocab_size = 48 | |
hidden_size = 16 | |
seed = 1236 | |
set_random_seed(123) | |
input_data = torch.LongTensor( | |
size=(batch_size, seq_length)).random_(0, vocab_size).to(device_name) | |
loss_weight = torch.randn([batch_size, seq_length, hidden_size]).to(device_name) | |
set_random_seed(seed) | |
embedding_original = torch.nn.Embedding(vocab_size, hidden_size).to(device_name) | |
output = embedding_original(input_data) | |
loss_original = torch.mul(output, loss_weight).sum() | |
loss_original.backward() | |
set_random_seed(seed) | |
embedding_parallel = layers.ParallelEmbedding( | |
vocab_size, hidden_size, init_method=init.normal_).to(device_name) | |
output = embedding_parallel(input_data) | |
loss_parallel = torch.mul(output, loss_weight).sum() | |
loss_parallel.backward() | |
set_random_seed(seed) | |
embedding_vocab_parallel = layers.VocabParallelEmbedding( | |
vocab_size, hidden_size, init_method=init.normal_).to(device_name) | |
output = embedding_vocab_parallel(input_data) | |
loss_vocab_parallel = torch.mul(output, loss_weight).sum() | |
loss_vocab_parallel.backward() | |
torch.distributed.barrier() | |
error = loss_parallel.sub(loss_original).abs() | |
print(' error in loss (parallel) on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-12, 'error: {}'.format(error) | |
torch.distributed.barrier() | |
error = loss_vocab_parallel.sub(loss_original).abs() | |
print(' error in loss (vocab parallel) on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-12, 'error: {}'.format(error) | |
weight_grad_orig = torch.split(embedding_original.weight.grad, | |
hidden_size // tensor_model_parallel_size, | |
1)[mpu.get_tensor_model_parallel_rank()] | |
error = embedding_parallel.weight.grad.sub(weight_grad_orig).abs().max() | |
print(' error in grad (parallel) on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-12, 'error: {}'.format(error) | |
weight_grad_orig = torch.split(embedding_original.weight.grad, | |
vocab_size // tensor_model_parallel_size, | |
0)[mpu.get_tensor_model_parallel_rank()] | |
error = embedding_vocab_parallel.weight.grad.sub( | |
weight_grad_orig).abs().max() | |
print(' error in grad (vocab parallel) on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-12, 'error: {}'.format(error) | |
# Reset groups | |
mpu.destroy_model_parallel() | |
torch.distributed.barrier() | |
if torch.distributed.get_rank() == 0: | |
print('>> passed the test :-)') | |
def test_initialize_affine_weight(tensor_model_parallel_size): | |
mpu.initialize_model_parallel(tensor_model_parallel_size) | |
if torch.distributed.get_rank() == 0: | |
print('> testing initialize_affine_weight with model parallel ' | |
'size: {}'.format(tensor_model_parallel_size)) | |
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() | |
seed = 12345 | |
input_size_coeff = 13 | |
input_size = input_size_coeff * tensor_model_parallel_size | |
output_size_coeff = 17 | |
output_size = output_size_coeff * tensor_model_parallel_size | |
# --------------- | |
# Column parallel | |
# --------------- | |
weight = torch.empty(output_size_coeff, input_size) | |
set_random_seed(seed) | |
layers._initialize_affine_weight(weight, output_size, input_size, | |
output_size_coeff, 0, | |
torch.nn.init.normal_) | |
# Target. | |
set_random_seed(seed) | |
master_weight = torch.empty(output_size, input_size) | |
torch.nn.init.normal_(master_weight) | |
rank = mpu.get_tensor_model_parallel_rank() | |
my_weight = torch.split(master_weight, output_size_coeff, | |
dim=0)[rank].contiguous().clone() | |
# Compare. | |
error = weight.sub(my_weight).abs().max() | |
torch.distributed.barrier() | |
print(' column parallel max error (should be zero) on global rank ' | |
'{}: {}'.format(torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
# ------------ | |
# Row parallel | |
# ------------ | |
weight = torch.empty(output_size, input_size_coeff) | |
set_random_seed(seed) | |
mpu.layers._initialize_affine_weight(weight, output_size, input_size, | |
input_size_coeff, 1, | |
torch.nn.init.normal_) | |
# Target. | |
set_random_seed(seed) | |
master_weight = torch.empty(output_size, input_size) | |
torch.nn.init.normal_(master_weight) | |
rank = mpu.get_tensor_model_parallel_rank() | |
my_weight = torch.split(master_weight, input_size_coeff, | |
dim=1)[rank].contiguous().clone() | |
# Compare. | |
error = weight.sub(my_weight).abs().max() | |
torch.distributed.barrier() | |
print(' row parallel max error (should be zero) on global rank ' | |
'{}: {}'.format(torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
# Reset groups | |
mpu.destroy_model_parallel() | |
torch.distributed.barrier() | |
if torch.distributed.get_rank() == 0: | |
print(' >> passed the test :-)') | |
class IdentityLayer2D(torch.nn.Module): | |
def __init__(self, m, n): | |
super(IdentityLayer2D, self).__init__() | |
self.weight = Parameter(torch.Tensor(m, n)) | |
torch.nn.init.xavier_normal_(self.weight) | |
def forward(self): | |
return self.weight | |
def test_column_parallel_linear(tensor_model_parallel_size): | |
mpu.initialize_model_parallel(tensor_model_parallel_size) | |
if torch.distributed.get_rank() == 0: | |
print('> testing ColumnParallelLinear with model parallel ' | |
'size: {}'.format(tensor_model_parallel_size)) | |
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() | |
seed = 12345 | |
set_random_seed(seed) | |
input_size_coeff = 13 | |
input_size = input_size_coeff * tensor_model_parallel_size | |
output_size_coeff = 17 | |
output_size = output_size_coeff * tensor_model_parallel_size | |
batch_size = 7 | |
# Network | |
identity_layer = IdentityLayer2D(batch_size, input_size).to(device_name) | |
linear_layer = mpu.ColumnParallelLinear( | |
input_size, output_size, keep_master_weight_for_test=True).to(device_name) | |
loss_weight = torch.randn([batch_size, output_size]).to(device_name) | |
# Forward | |
input_ = identity_layer() | |
output = linear_layer(input_) | |
loss = torch.mul(output, loss_weight).sum() | |
# Backward | |
loss.backward() | |
# Values. | |
dLdY = loss_weight | |
X = identity_layer.weight | |
A = linear_layer.master_weight.to(device_name) | |
dLdA = torch.matmul(dLdY.t(), X) | |
dLdb = torch.matmul(torch.ones(batch_size, 1).to(device_name).t(), dLdY).view(-1) | |
dLdX = torch.matmul(dLdY, A) | |
rank = mpu.get_tensor_model_parallel_rank() | |
my_dLdA = torch.split(dLdA, output_size_coeff, | |
dim=0)[rank].contiguous().clone() | |
error = my_dLdA.sub(linear_layer.weight.grad).abs().max() | |
torch.distributed.barrier() | |
print(' error in dLdA on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
my_dLdb = torch.split(dLdb, output_size_coeff, | |
dim=0)[rank].contiguous().clone() | |
error = my_dLdb.sub(linear_layer.bias.grad).abs().max() | |
torch.distributed.barrier() | |
print(' error in dLdb on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
error = dLdX.sub(identity_layer.weight.grad).abs().max() | |
torch.distributed.barrier() | |
print(' error in dLdX on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
# Reset groups | |
mpu.destroy_model_parallel() | |
torch.distributed.barrier() | |
if torch.distributed.get_rank() == 0: | |
print(' >> passed the test :-)') | |
def test_row_parallel_linear(tensor_model_parallel_size): | |
mpu.initialize_model_parallel(tensor_model_parallel_size) | |
if torch.distributed.get_rank() == 0: | |
print('> testing RowParallelLinear with model parallel ' | |
'size: {}'.format(tensor_model_parallel_size)) | |
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() | |
seed = 12345 | |
set_random_seed(seed) | |
input_size_coeff = 13 | |
input_size = input_size_coeff * tensor_model_parallel_size | |
output_size_coeff = 17 | |
output_size = output_size_coeff * tensor_model_parallel_size | |
batch_size = 7 | |
# Network | |
identity_layer = IdentityLayer2D(batch_size, input_size).to(device_name) | |
linear_layer = mpu.RowParallelLinear( | |
input_size, output_size, keep_master_weight_for_test=True).to(device_name) | |
loss_weight = torch.randn([batch_size, output_size]).to(device_name) | |
# Forward | |
input_ = identity_layer() | |
output = linear_layer(input_) | |
loss = torch.mul(output, loss_weight).sum() | |
# Backward | |
loss.backward() | |
# Values. | |
dLdY = loss_weight | |
X = identity_layer.weight | |
A = linear_layer.master_weight.to(device_name) | |
dLdA = torch.matmul(dLdY.t(), X) | |
dLdb = torch.matmul(torch.ones(batch_size, 1).to(device_name).t(), dLdY).view(-1) | |
dLdX = torch.matmul(dLdY, A) | |
rank = mpu.get_tensor_model_parallel_rank() | |
my_dLdA = torch.split(dLdA, input_size_coeff, | |
dim=1)[rank].contiguous().clone() | |
error = my_dLdA.sub(linear_layer.weight.grad).abs().max() | |
torch.distributed.barrier() | |
print(' error in dLdA on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
error = dLdb.sub(linear_layer.bias.grad).abs().max() | |
torch.distributed.barrier() | |
print(' error in dLdb on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
error = dLdX.sub(identity_layer.weight.grad).abs().max() | |
torch.distributed.barrier() | |
print(' error in dLdX on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 1.0e-6 | |
# Reset groups | |
mpu.destroy_model_parallel() | |
torch.distributed.barrier() | |
if torch.distributed.get_rank() == 0: | |
print(' >> passed the test :-)') | |
class IdentityLayer3D(torch.nn.Module): | |
def __init__(self, m, n, k): | |
super(IdentityLayer3D, self).__init__() | |
self.weight = Parameter(torch.Tensor(m, n, k)) | |
torch.nn.init.xavier_normal_(self.weight) | |
def forward(self): | |
return self.weight | |
def parallel_self_attention(tensor_model_parallel_size, num_att_heads_per_partition, | |
hidden_size_per_att_head, dropout_prob, batch_size, | |
sequence_length): | |
mpu.initialize_model_parallel(tensor_model_parallel_size) | |
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() | |
seed = 12345 | |
set_random_seed(seed) | |
num_att_heads = num_att_heads_per_partition * \ | |
torch.distributed.get_world_size() | |
hidden_size = hidden_size_per_att_head * num_att_heads | |
# Network | |
identity_layer = IdentityLayer3D(batch_size, sequence_length, | |
hidden_size).to(device_name) | |
attention_layer = mpu.BertParallelSelfAttention(hidden_size, num_att_heads, | |
dropout_prob).to(device_name) | |
loss_weight = torch.randn([batch_size, sequence_length, hidden_size]).to(device_name) | |
attention_mask = torch.randn([batch_size, 1, 1, sequence_length]).to(device_name) | |
# Forward | |
input_ = identity_layer() | |
output = attention_layer(input_, attention_mask) | |
loss = torch.mul(output, loss_weight).sum() | |
# Backward | |
loss.backward() | |
rank = mpu.get_tensor_model_parallel_rank() | |
mpu.destroy_model_parallel() | |
return rank, hidden_size, tensor_model_parallel_size, loss, \ | |
attention_layer, identity_layer | |
def test_parallel_self_attention(tensor_model_parallel_size): | |
if torch.distributed.get_rank() == 0: | |
print('> testing ParallelSelfAttention with model parallel ' | |
'size: {}'.format(tensor_model_parallel_size)) | |
num_att_heads_per_partition = 3 | |
hidden_size_per_att_head = 7 | |
dropout_prob = 0.0 # has to be zero | |
batch_size = 5 | |
sequence_length = 13 | |
rank_1, hideen_size_1, tensor_model_parallel_size_1, loss_1, \ | |
attention_layer_1, identity_layer_1 = parallel_self_attention( | |
1, num_att_heads_per_partition, | |
hidden_size_per_att_head, dropout_prob, batch_size, sequence_length) | |
rank, hidden_size, tensor_model_parallel_size, loss, \ | |
attention_layer, identity_layer = parallel_self_attention( | |
tensor_model_parallel_size, num_att_heads_per_partition, | |
hidden_size_per_att_head, dropout_prob, batch_size, sequence_length) | |
assert hideen_size_1 == hidden_size | |
error = loss_1.sub(loss).abs().max() | |
torch.distributed.barrier() | |
print(' loss error on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 5.0e-6 | |
my_lin_grad_list = torch.split( | |
attention_layer_1.query_key_value.weight.grad, | |
hidden_size // tensor_model_parallel_size, 0)[rank::tensor_model_parallel_size] | |
my_lin_grad = torch.cat(my_lin_grad_list, dim=0) | |
error = my_lin_grad.sub( | |
attention_layer.query_key_value.weight.grad).abs().max() | |
torch.distributed.barrier() | |
print(' weight gradient error on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 5.0e-6 | |
error = identity_layer_1.weight.grad.sub( | |
identity_layer.weight.grad).abs().max() | |
torch.distributed.barrier() | |
print(' input gradient error on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 5.0e-6 | |
torch.distributed.barrier() | |
if torch.distributed.get_rank() == 0: | |
print(' >> passed the test :-)') | |
def parallel_transformer(tensor_model_parallel_size, num_att_heads_per_partition, | |
hidden_size_per_att_head, batch_size, sequence_length): | |
mpu.initialize_model_parallel(tensor_model_parallel_size) | |
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() | |
seed = 12345 | |
set_random_seed(seed) | |
num_att_heads = num_att_heads_per_partition * \ | |
torch.distributed.get_world_size() | |
hidden_size = hidden_size_per_att_head * num_att_heads | |
intermediate_size = 4 * hidden_size | |
# Network | |
identity_layer = IdentityLayer3D(batch_size, sequence_length, | |
hidden_size).to(device_name) | |
transformer_layer = mpu.BertParallelTransformerLayer( | |
hidden_size, intermediate_size, num_att_heads, 0.0, 0.0, | |
torch.nn.functional.relu, 1.0e-5).to(device_name) | |
loss_weight = torch.randn([batch_size, sequence_length, hidden_size]).to(device_name) | |
attention_mask = torch.randn([batch_size, 1, 1, sequence_length]).to(device_name) | |
# Forward | |
input_ = identity_layer() | |
output = transformer_layer(input_, attention_mask) | |
loss = torch.mul(output, loss_weight).sum() | |
# Backward | |
loss.backward() | |
rank = mpu.get_tensor_model_parallel_rank() | |
mpu.destroy_model_parallel() | |
return rank, hidden_size, tensor_model_parallel_size, loss, \ | |
transformer_layer, identity_layer | |
def test_parallel_transformer_layer(tensor_model_parallel_size): | |
if torch.distributed.get_rank() == 0: | |
print('> testing ParallelTransformerLayer with model parallel ' | |
'size: {}'.format(tensor_model_parallel_size)) | |
num_att_heads_per_partition = 3 | |
hidden_size_per_att_head = 7 | |
batch_size = 5 | |
sequence_length = 13 | |
rank_1, hidden_size_1, tensor_model_parallel_size_1, loss_1, \ | |
transformer_layer_1, identity_layer_1 = parallel_transformer( | |
1, num_att_heads_per_partition, | |
hidden_size_per_att_head, batch_size, sequence_length) | |
rank, hidden_size, tensor_model_parallel_size, loss, \ | |
transformer_layer, identity_layer = parallel_transformer( | |
tensor_model_parallel_size, num_att_heads_per_partition, | |
hidden_size_per_att_head, batch_size, sequence_length) | |
error = loss_1.sub(loss).abs().max() | |
torch.distributed.barrier() | |
print(' loss error on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 5.0e-5, 'error: {}'.format(error) | |
error = identity_layer_1.weight.grad.sub( | |
identity_layer.weight.grad).abs().max() | |
torch.distributed.barrier() | |
print(' input gradient error on global rank {}: {}'.format( | |
torch.distributed.get_rank(), error)) | |
assert error < 5.0e-5, 'error: {}'.format(error) | |
torch.distributed.barrier() | |
if torch.distributed.get_rank() == 0: | |
print(' >> passed the test :-)') | |
if __name__ == '__main__': | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
initialize_distributed() | |
world_size = torch.distributed.get_world_size() | |
print_separator('test initialize affine weight') | |
tensor_model_parallel_size = 1 | |
while tensor_model_parallel_size <= world_size: | |
test_initialize_affine_weight(tensor_model_parallel_size) | |
tensor_model_parallel_size *= 2 | |
tensor_model_parallel_size = 1 | |
while tensor_model_parallel_size <= world_size: | |
print_separator('test parallel embedding') | |
test_parallel_embedding(tensor_model_parallel_size) | |
tensor_model_parallel_size *= 2 | |
print_separator('test column-parallel linear') | |
tensor_model_parallel_size = 1 | |
while tensor_model_parallel_size <= world_size: | |
test_column_parallel_linear(tensor_model_parallel_size) | |
tensor_model_parallel_size *= 2 | |
print_separator('test row-parallel linear') | |
tensor_model_parallel_size = 1 | |
while tensor_model_parallel_size <= world_size: | |
test_row_parallel_linear(tensor_model_parallel_size) | |
tensor_model_parallel_size *= 2 | |
print_separator('test parallel self-attention') | |
tensor_model_parallel_size = 1 | |
while tensor_model_parallel_size <= world_size: | |
test_parallel_self_attention(tensor_model_parallel_size) | |
tensor_model_parallel_size *= 2 | |
print_separator('test parallel transformer') | |
tensor_model_parallel_size = 1 | |
while tensor_model_parallel_size <= world_size: | |
test_parallel_transformer_layer(tensor_model_parallel_size) | |
tensor_model_parallel_size *= 2 | |