peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/text_generation
/forward_step.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Forward step utilities.""" | |
from collections.abc import Iterable | |
import torch | |
from megatron import get_args | |
from megatron.core import mpu | |
from .communication import ( | |
send_to_next_pipeline_rank, | |
recv_from_prev_pipeline_rank_) | |
class InferenceParams: | |
"""Inference parameters that are passed to the main model in order | |
to efficienly calculate and store the context during inference.""" | |
def __init__(self, max_batch_size, max_sequence_len): | |
"""Note that offsets are set to zero and we always set the | |
flag to allocate memory. After the first call, make sure to | |
set this flag to False.""" | |
self.max_sequence_len = max_sequence_len | |
self.max_batch_size = max_batch_size | |
self.sequence_len_offset = 0 | |
self.batch_size_offset = 0 | |
self.key_value_memory_dict = {} | |
def swap_key_value_dict(self, batch_idx): | |
"swap between batches" | |
if len(self.key_value_memory_dict) == 0: | |
raise ValueError("should not swap when dict in empty") | |
for layer_number in self.key_value_memory_dict.keys(): | |
inference_key_memory, inference_value_memory = self.key_value_memory_dict[layer_number] | |
assert len(batch_idx) == inference_key_memory.shape[1] ## make sure batch size is the same | |
new_inference_key_memory = inference_key_memory[:, batch_idx] | |
new_inference_value_memory = inference_value_memory[:, batch_idx] | |
self.key_value_memory_dict[layer_number] = ( | |
new_inference_key_memory, new_inference_value_memory) | |
class ForwardStep: | |
"""Forward step function with all the communications. | |
We use a class here to hide the inference parameters | |
from the outside caller.""" | |
def __init__(self, model, max_batch_size, max_sequence_len): | |
"""Set values so we don't need to do it multiple times.""" | |
# Make sure model is in eval mode. | |
assert not isinstance(model, Iterable), \ | |
'interleaving schedule is not supported for inference' | |
model.eval() | |
self.model = model | |
# Initialize inference parameters. | |
self.inference_params = InferenceParams(max_batch_size, | |
max_sequence_len) | |
# Pipelining arguments. | |
args = get_args() | |
self.pipeline_size_larger_than_one = ( | |
args.pipeline_model_parallel_size > 1) | |
# Threshold of pipelining. | |
self.pipelining_batch_x_seqlen = \ | |
args.inference_batch_times_seqlen_threshold | |
def __call__(self, tokens, position_ids, attention_mask): | |
"""Invocation of the forward methods. Note that self.inference_params | |
is being modified by the forward step.""" | |
# Pipelining case. | |
if self.pipeline_size_larger_than_one: | |
current_batch_x_seqlen = tokens.size(0) * tokens.size(1) | |
if current_batch_x_seqlen >= self.pipelining_batch_x_seqlen: | |
micro_batch_size = \ | |
max(1, self.pipelining_batch_x_seqlen // tokens.size(1)) | |
return _with_pipelining_forward_step(self.model, | |
tokens, | |
position_ids, | |
attention_mask, | |
self.inference_params, | |
micro_batch_size) | |
return _no_pipelining_forward_step(self.model, | |
tokens, | |
position_ids, | |
attention_mask, | |
self.inference_params) | |
def _get_recv_buffer_dtype(args): | |
"""Receive happens between the layers.""" | |
if args.fp32_residual_connection: | |
return torch.float | |
return args.params_dtype | |
def _allocate_recv_buffer(batch_size, sequence_length): | |
"""Receive happens between the layers with size [s, b, h].""" | |
if mpu.is_pipeline_first_stage(): | |
return None | |
args = get_args() | |
recv_size = (sequence_length, batch_size, args.hidden_size) | |
return torch.empty(recv_size, | |
dtype=_get_recv_buffer_dtype(args), | |
device=torch.cuda.current_device()) | |
def _forward_step_helper(model, tokens, position_ids, attention_mask, | |
inference_params, recv_buffer=None): | |
"""Single forward step. Update the allocate memory flag so | |
only the first time the memory is allocated.""" | |
batch_size = tokens.size(0) | |
sequence_length = tokens.size(1) | |
if recv_buffer is None: | |
recv_buffer = _allocate_recv_buffer(batch_size, sequence_length) | |
# Receive from previous stage. | |
recv_from_prev_pipeline_rank_(recv_buffer) | |
# Forward pass through the model. | |
model.set_input_tensor(recv_buffer) | |
output_tensor = model(tokens, position_ids, attention_mask, | |
inference_params=inference_params) | |
# Send output to the next stage. | |
send_to_next_pipeline_rank(output_tensor) | |
return output_tensor | |
def _no_pipelining_forward_step(model, tokens, position_ids, attention_mask, | |
inference_params, recv_buffer=None): | |
"""If recv_buffer is none, we will allocate one on the fly.""" | |
# Run a simple forward pass. | |
output_tensor = _forward_step_helper(model, tokens, position_ids, | |
attention_mask, inference_params, | |
recv_buffer=recv_buffer) | |
# Update the sequence length offset. | |
inference_params.sequence_len_offset += tokens.size(1) | |
logits = None | |
if mpu.is_pipeline_last_stage(): | |
logits = output_tensor | |
return logits | |
def _with_pipelining_forward_step(model, tokens, position_ids, attention_mask, | |
inference_params, micro_batch_size): | |
"""No interleaving is supported.""" | |
sequence_length = tokens.size(1) | |
batch_size = tokens.size(0) | |
# Divide the batch dimension into micro batches. | |
num_micro_batches, last_chunk = divmod(batch_size, | |
micro_batch_size) | |
if last_chunk > 0: | |
num_micro_batches += 1 | |
# Preallocate memory for output logits. | |
logits = None | |
if mpu.is_pipeline_last_stage(): | |
args = get_args() | |
logits = torch.empty( | |
(batch_size, sequence_length, args.padded_vocab_size), | |
dtype=torch.float32, device=torch.cuda.current_device()) | |
# Preallocate recv buffer. | |
recv_buffer = _allocate_recv_buffer(micro_batch_size, sequence_length) | |
for micro_batch_index in range(num_micro_batches): | |
# Slice among the batch dimenion. | |
start = micro_batch_index * micro_batch_size | |
end = min(start + micro_batch_size, batch_size) | |
this_micro_batch_size = end - start | |
tokens2use = tokens[start:end, ...] | |
position_ids2use = position_ids[start:end, ...] | |
# Run a simple forward pass. | |
if this_micro_batch_size != micro_batch_size: | |
recv_buffer = None | |
output = _forward_step_helper(model, tokens2use, position_ids2use, | |
attention_mask, inference_params, | |
recv_buffer=recv_buffer) | |
# Adjust the batch size offset to account for the micro-batch. | |
inference_params.batch_size_offset += this_micro_batch_size | |
# Copy logits. | |
if mpu.is_pipeline_last_stage(): | |
logits[start:end, ...] = output | |
# Once we are done with all the micro-batches, we can | |
# adjust the sequence length offset. | |
inference_params.sequence_len_offset += sequence_length | |
# and reset the batch size offset | |
inference_params.batch_size_offset = 0 | |
return logits | |