|
|
|
|
|
|
|
"""Pretrain utilities.""" |
|
|
|
from datetime import datetime |
|
import math |
|
import sys |
|
import time |
|
import json |
|
|
|
_TRAIN_START_TIME = time.time() |
|
import torch |
|
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP |
|
from contextlib import nullcontext |
|
|
|
from megatron import get_args |
|
from megatron import get_signal_handler |
|
from megatron import get_timers |
|
from megatron import get_tensorboard_writer |
|
from megatron import get_current_global_batch_size |
|
from megatron import get_num_microbatches, get_num_eval_microbatches |
|
from megatron import is_last_rank |
|
from megatron import update_num_microbatches |
|
from megatron.core import mpu, tensor_parallel |
|
from megatron import print_rank_0, is_rank_0 |
|
from megatron import print_rank_last |
|
from megatron.checkpointing import load_checkpoint |
|
from megatron.checkpointing import save_checkpoint |
|
from megatron.model import Float16Module |
|
from megatron.model import GPTModel |
|
from megatron.core.enums import ModelType |
|
from megatron.optimizer import get_megatron_optimizer |
|
from megatron.initialize import initialize_megatron |
|
from megatron.initialize import write_args_to_tensorboard |
|
from megatron.initialize import set_jit_fusion_options |
|
from megatron.optimizer_param_scheduler import OptimizerParamScheduler |
|
from megatron.model import DistributedDataParallel as LocalDDP |
|
from megatron.utils import check_adlr_autoresume_termination |
|
from megatron.utils import unwrap_model, found_kill_switch |
|
from megatron.data.data_samplers import build_pretraining_data_loader |
|
from megatron.utils import calc_params_l2_norm |
|
from megatron.core.pipeline_parallel import get_forward_backward_func |
|
from megatron.utils import report_memory, throughput_calculator, checkpoint_throughput_calculator, update_rotary_pos_emb, get_fp8_recipe |
|
from megatron.core.tensor_parallel.data import reset_cached_broadcast_sizes |
|
from megatron.utils import report_memory, throughput_calculator, checkpoint_throughput_calculator |
|
from megatron.model.vision.knn_monitor import compute_feature_bank |
|
from megatron.arguments import core_transformer_config_from_args |
|
from megatron.profiler import setup_profiler, trigger, on_step_begin, on_step_end |
|
|
|
import deepspeed |
|
from deepspeed.accelerator import get_accelerator |
|
from deepspeed.compression.compress import init_compression, redundancy_clean |
|
from deepspeed.runtime.data_pipeline.data_routing.helper import convert_to_random_ltd |
|
from megatron.model.transformer import ParallelTransformerLayer |
|
|
|
from deepspeed import comm as dist |
|
|
|
try: |
|
import wandb |
|
except (ImportError, ModuleNotFoundError): |
|
wandb = None |
|
|
|
try: |
|
from habana_frameworks.torch.hpex.experimental.transformer_engine import fp8_autocast |
|
from habana_frameworks.torch.hpex.experimental.transformer_engine import recipe |
|
except (ImportError, ModuleNotFoundError): |
|
fp8_autocast = None |
|
recipe = None |
|
|
|
def print_datetime(string): |
|
"""Note that this call will sync across all ranks.""" |
|
torch.distributed.barrier() |
|
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
|
print_rank_0('[' + string + '] datetime: {} '.format(time_str)) |
|
|
|
''' |
|
Since v0.9.0, deepspeed.initialize() has forbidden simultaneous setting of args.deepspeed_config (Path) and ds_config dict. |
|
So, we use ds_config dict which is the more flexible option. |
|
''' |
|
def _create_ds_config_dict(): |
|
args = get_args() |
|
if isinstance(args.deepspeed_config, dict) : |
|
ds_config_dict = args.deepspeed_config |
|
else: |
|
with open(args.deepspeed_config, 'r', encoding='utf-8') as config_file: |
|
ds_config_dict = json.load(config_file) |
|
|
|
if args.universal_checkpoint: |
|
ds_config_dict["checkpoint"] = {"load_universal": True} |
|
|
|
|
|
args.deepspeed_config = None |
|
|
|
return ds_config_dict |
|
|
|
|
|
def pretrain(train_valid_test_dataset_provider, |
|
model_provider, |
|
model_type, |
|
forward_step_func, |
|
process_non_loss_data_func=None, |
|
extra_args_provider=None, |
|
args_defaults={}, |
|
data_post_process=None): |
|
"""Main training program. |
|
|
|
This function will run the followings in the order provided: |
|
1) initialize Megatron. |
|
2) setup model, optimizer and lr schedule using the model_provider. |
|
3) call train_val_test_data_provider to get train/val/test datasets. |
|
4) train the modle using the forward_step_func. |
|
|
|
Arguments: |
|
train_valid_test_dataset_provider: a function that takes the size of |
|
train/valid/test dataset and returns `train, valid, test` datasets. |
|
model_provider: a function that returns a vanilla version of the |
|
model. By vanilla we mean a simple model on cpu with no fp16 or ddp. |
|
model_type: an enum that specifies the type of model being trained. |
|
forward_step_func: a function that takes a `data iterator` and `model`, |
|
and returns a `loss` scalar with a dictionary with key:values being |
|
the info we would like to monitor during training, for example |
|
`lm-loss: value`. We also require that this function add |
|
`batch generator` to the timers class. |
|
process_non_loss_data_func: a function to post process outputs of the |
|
network. It can be used for dumping output tensors (e.g images) to |
|
tensorboard. It takes `collected data`(list of tensors), |
|
`current iteration index` and `tensorboard writer` as arguments. |
|
extra_args_provider: a function that takes a parser and adds arguments |
|
to it. It is used for programs to add their own arguments. |
|
args_defaults: a dictionary from argument-name to argument-value. It |
|
to set already parse arguments. |
|
""" |
|
|
|
|
|
initialize_megatron(extra_args_provider=extra_args_provider, |
|
args_defaults=args_defaults) |
|
|
|
args = get_args() |
|
|
|
if found_kill_switch(): |
|
print_datetime(f"Detected kill switch at {args.kill_switch_path}. Exiting") |
|
torch.distributed.barrier() |
|
sys.exit() |
|
|
|
|
|
if get_accelerator().device_name() == 'cuda': |
|
set_jit_fusion_options() |
|
|
|
|
|
|
|
|
|
global _TRAIN_START_TIME |
|
start_time_tensor = get_accelerator().DoubleTensor([_TRAIN_START_TIME]) |
|
torch.distributed.all_reduce(start_time_tensor, |
|
op=torch.distributed.ReduceOp.MIN) |
|
_TRAIN_START_TIME = start_time_tensor.item() |
|
print_rank_0('time to initialize megatron (seconds): {:.3f}'.format( |
|
time.time() - _TRAIN_START_TIME)) |
|
print_datetime('after megatron is initialized') |
|
|
|
timers = get_timers() |
|
|
|
if args.deepspeed: |
|
args.deepspeed_config_dict = _create_ds_config_dict() |
|
if "curriculum_learning" in args.deepspeed_config_dict and \ |
|
"enabled" in args.deepspeed_config_dict["curriculum_learning"]: |
|
args.curriculum_learning_legacy = args.deepspeed_config_dict[ \ |
|
"curriculum_learning"]["enabled"] |
|
if args.curriculum_learning_legacy and not args.no_pipeline_parallel: |
|
from deepspeed.runtime.data_pipeline.curriculum_scheduler \ |
|
import CurriculumScheduler |
|
args.curriculum_scheduler = CurriculumScheduler( \ |
|
args.deepspeed_config_dict["curriculum_learning"]) |
|
if "compression_training" in args.deepspeed_config_dict: |
|
args.compression_training = True |
|
|
|
|
|
timers('model-and-optimizer-setup', log_level=0).start(barrier=True) |
|
model, optimizer, opt_param_scheduler = setup_model_and_optimizer( |
|
model_provider, model_type, teacher=False, data_post_process=data_post_process, |
|
build_train_valid_test_datasets_provider=train_valid_test_dataset_provider) |
|
timers('model-and-optimizer-setup').stop() |
|
print_datetime('after model, optimizer, and learning rate ' |
|
'scheduler are built') |
|
|
|
|
|
timers('train/valid/test-data-iterators-setup', log_level=0).start( |
|
barrier=True) |
|
if args.virtual_pipeline_model_parallel_size is not None: |
|
all_data_iterators = [ |
|
build_train_valid_test_data_iterators( |
|
train_valid_test_dataset_provider) |
|
for _ in range(len(model)) |
|
] |
|
train_data_iterator = [data_iterators[0] |
|
for data_iterators in all_data_iterators] |
|
valid_data_iterator = [data_iterators[1] |
|
for data_iterators in all_data_iterators] |
|
test_data_iterator = [data_iterators[2] |
|
for data_iterators in all_data_iterators] |
|
else: |
|
train_data_iterator, valid_data_iterator, test_data_iterator \ |
|
= build_train_valid_test_data_iterators( |
|
train_valid_test_dataset_provider) |
|
if args.data_efficiency_curriculum_learning: |
|
if args.deepspeed_dataloader is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
train_data_iterator = iter(args.deepspeed_dataloader) |
|
args.deepspeed_dataloader = None |
|
else: |
|
train_data_iterator = None |
|
timers('train/valid/test-data-iterators-setup').stop() |
|
print_datetime('after dataloaders are built') |
|
|
|
|
|
|
|
|
|
|
|
args.teacher_model = None |
|
if args.mos or args.kd: |
|
args.teacher_model = setup_teacher_model(args, model_provider) |
|
|
|
|
|
print_rank_0('done with setup ...') |
|
timers.log(['model-and-optimizer-setup', |
|
'train/valid/test-data-iterators-setup'], barrier=True) |
|
|
|
if not args.skip_train: |
|
print_rank_0('training ...') |
|
|
|
if args.dataloader_type == 'cyclic' and args.retro_add_retriever: |
|
args.train_iters = args.retro_cyclic_train_iters |
|
print_rank_0("retro cyclic train iters : %d" % args.train_iters) |
|
|
|
iteration = 0 |
|
if args.do_train and args.train_iters > 0: |
|
iteration = train(forward_step_func, |
|
model, optimizer, opt_param_scheduler, |
|
train_data_iterator, valid_data_iterator, |
|
process_non_loss_data_func) |
|
|
|
print_datetime('after training is done') |
|
|
|
if args.compression_training: |
|
model = [redundancy_clean(model[0], args.deepspeed_config_dict, mpu)] |
|
|
|
if args.save and iteration != 0: |
|
save_checkpoint(iteration, model, optimizer, opt_param_scheduler) |
|
else: |
|
print_rank_0('skipping training (--skip-train is on) ...') |
|
|
|
iteration = args.iteration |
|
if args.save and (iteration != 0 or args.universal_checkpoint): |
|
save_checkpoint(iteration, model, optimizer, opt_param_scheduler) |
|
|
|
config = core_transformer_config_from_args(args) |
|
if args.do_valid: |
|
prefix = f'iteration {iteration} on {args.eval_iters * args.global_batch_size}-sample draw from validation set' |
|
_ = evaluate_and_print_results(prefix, forward_step_func, |
|
valid_data_iterator, model, |
|
iteration, process_non_loss_data_func, config, |
|
verbose=True, write_to_tensorboard=not args.skip_train) |
|
|
|
if args.do_test: |
|
prefix = f'iteration {iteration} on {args.eval_iters * args.global_batch_size}-sample draw from test set' |
|
_ = evaluate_and_print_results(prefix, forward_step_func, |
|
test_data_iterator, model, |
|
iteration, process_non_loss_data_func, config, |
|
verbose=True, write_to_tensorboard=not args.skip_train, test=True) |
|
return model |
|
|
|
|
|
def update_train_iters(args): |
|
|
|
|
|
if args.train_iters: |
|
return |
|
|
|
|
|
if args.rampup_batch_size is None: |
|
args.train_iters = args.train_samples // args.global_batch_size |
|
|
|
else: |
|
|
|
iterations = 0 |
|
consumed_samples = 0 |
|
|
|
while consumed_samples <= int(args.rampup_batch_size[2]): |
|
update_num_microbatches(consumed_samples, consistency_check=False) |
|
consumed_samples += get_current_global_batch_size() |
|
iterations += 1 |
|
|
|
update_num_microbatches(0, consistency_check=False) |
|
|
|
|
|
iterations += (args.train_samples - consumed_samples) // \ |
|
args.global_batch_size |
|
args.train_iters = iterations |
|
|
|
print_rank_0('setting training iterations to {}'.format(args.train_iters)) |
|
|
|
|
|
def setup_teacher_model(args, model_provider): |
|
|
|
print_rank_0('***>>>>> Student model checkpoint iteration:{}'.format(args.iteration)) |
|
iteration_stuent = args.iteration |
|
num_layers_student = args.num_layers |
|
num_experts_student = args.num_experts |
|
hidden_size_student = args.hidden_size |
|
num_attention_heads_student = args.num_attention_heads |
|
load_student = args.load |
|
|
|
print_rank_0('***>>>>> Setting up the teacher model') |
|
|
|
args.num_layers = args.num_layers_teacher |
|
args.num_experts = args.num_experts_teacher |
|
args.hidden_size = args.hidden_size_teacher |
|
args.num_attention_heads = args.num_attention_heads_teacher |
|
args.load = args.load_teacher |
|
teacher_model, _, _ = load_model_weights_only(model_provider) |
|
print_rank_0('***>>>>> Teacher model:{}'.format(teacher_model)) |
|
|
|
args.num_layers = num_layers_student |
|
args.num_experts = num_experts_student |
|
args.hidden_size = hidden_size_student |
|
args.num_attention_heads = num_attention_heads_student |
|
args.load = load_student |
|
args.iteration = iteration_stuent |
|
|
|
return teacher_model |
|
|
|
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True): |
|
"""Build the model.""" |
|
args = get_args() |
|
args.model_type = model_type |
|
|
|
|
|
if mpu.get_pipeline_model_parallel_world_size() > 1 and \ |
|
args.virtual_pipeline_model_parallel_size is not None: |
|
assert model_type != ModelType.encoder_and_decoder, \ |
|
"Interleaved schedule not supported for model with both encoder and decoder" |
|
model = [] |
|
for i in range(args.virtual_pipeline_model_parallel_size): |
|
mpu.set_virtual_pipeline_model_parallel_rank(i) |
|
|
|
pre_process = mpu.is_pipeline_first_stage() |
|
post_process = mpu.is_pipeline_last_stage() |
|
this_model = model_provider_func( |
|
pre_process=pre_process, |
|
post_process=post_process |
|
) |
|
this_model.model_type = model_type |
|
model.append(this_model) |
|
else: |
|
pre_process = mpu.is_pipeline_first_stage() |
|
post_process = mpu.is_pipeline_last_stage() |
|
add_encoder = True |
|
add_decoder = True |
|
if model_type == ModelType.encoder_and_decoder: |
|
if mpu.get_pipeline_model_parallel_world_size() > 1: |
|
assert args.pipeline_model_parallel_split_rank is not None, \ |
|
"Split rank needs to be specified for model with both encoder and decoder" |
|
rank = mpu.get_pipeline_model_parallel_rank() |
|
split_rank = args.pipeline_model_parallel_split_rank |
|
world_size = mpu.get_pipeline_model_parallel_world_size() |
|
pre_process = rank == 0 or rank == split_rank |
|
post_process = (rank == (split_rank - 1)) or ( |
|
rank == (world_size - 1)) |
|
add_encoder = mpu.is_pipeline_stage_before_split() |
|
add_decoder = mpu.is_pipeline_stage_after_split() |
|
model = model_provider_func( |
|
pre_process=pre_process, |
|
post_process=post_process, |
|
add_encoder=add_encoder, |
|
add_decoder=add_decoder) |
|
else: |
|
model = model_provider_func( |
|
pre_process=pre_process, |
|
post_process=post_process |
|
) |
|
model.model_type = model_type |
|
|
|
|
|
if not isinstance(model, list): |
|
model = [model] |
|
|
|
|
|
|
|
args.allow_transformer_engine = all([type(m).__name__ in ['GPTModelPipe', 'GPTModel'] for m in model]) |
|
assert args.allow_transformer_engine or args.transformer_impl == 'local', \ |
|
'Transformer Engine is only approved for GPT models' |
|
|
|
|
|
|
|
|
|
|
|
for model_module in model: |
|
for param in model_module.parameters(): |
|
tensor_parallel.set_defaults_if_not_set_tensor_model_parallel_attributes(param) |
|
|
|
|
|
if mpu.get_data_parallel_rank() == 0: |
|
print(' > number of parameters on (tensor, pipeline) ' |
|
'model parallel rank ({}, {}): {}'.format( |
|
mpu.get_tensor_model_parallel_rank(), |
|
mpu.get_pipeline_model_parallel_rank(), |
|
sum([sum([p.ds_numel if hasattr(p,'ds_id') else p.nelement() for p in model_module.parameters()]) |
|
for model_module in model])), flush=True) |
|
|
|
if args.deepspeed: |
|
return model |
|
|
|
|
|
for model_module in model: |
|
model_module.to(get_accelerator().current_device_name()) |
|
|
|
|
|
|
|
if args.fp16 or args.bf16: |
|
model = [Float16Module(model_module, args) for model_module in model] |
|
|
|
if wrap_with_ddp: |
|
if args.DDP_impl == 'torch': |
|
i = get_accelerator().current_device() |
|
model = [torchDDP(model_module, device_ids=[i], output_device=i, |
|
process_group=mpu.get_data_parallel_group()) |
|
for model_module in model] |
|
|
|
elif args.DDP_impl == 'local': |
|
model = [LocalDDP(model_module, |
|
args.accumulate_allreduce_grads_in_fp32, |
|
args.use_contiguous_buffers_in_local_ddp) |
|
for model_module in model] |
|
|
|
if args.data_parallel_random_init: |
|
for model_module in model: |
|
model_module.broadcast_params() |
|
else: |
|
raise NotImplementedError('Unknown DDP implementation specified: ' |
|
'{}. Exiting.'.format(args.DDP_impl)) |
|
|
|
return model |
|
|
|
|
|
def get_optimizer_param_scheduler(optimizer): |
|
"""Build the learning rate scheduler.""" |
|
args = get_args() |
|
|
|
|
|
if args.train_iters: |
|
if args.lr_decay_iters is None: |
|
args.lr_decay_iters = args.train_iters |
|
lr_decay_steps = args.lr_decay_iters * args.global_batch_size |
|
wd_incr_steps = args.train_iters * args.global_batch_size |
|
if args.lr_warmup_fraction is not None: |
|
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps |
|
else: |
|
lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size |
|
|
|
elif args.train_samples: |
|
|
|
|
|
|
|
update_train_iters(args) |
|
if args.lr_decay_samples is None: |
|
args.lr_decay_samples = args.train_samples |
|
lr_decay_steps = args.lr_decay_samples |
|
wd_incr_steps = args.train_samples |
|
if args.lr_warmup_fraction is not None: |
|
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps |
|
else: |
|
lr_warmup_steps = args.lr_warmup_samples |
|
else: |
|
raise Exception( |
|
'either train-iters or train-samples should be provided.') |
|
|
|
opt_param_scheduler = OptimizerParamScheduler( |
|
optimizer, |
|
max_lr=args.lr, |
|
min_lr=args.min_lr, |
|
lr_warmup_steps=lr_warmup_steps, |
|
lr_decay_steps=lr_decay_steps, |
|
lr_decay_style=args.lr_decay_style, |
|
start_wd=args.start_weight_decay, |
|
end_wd=args.end_weight_decay, |
|
wd_incr_steps=wd_incr_steps, |
|
wd_incr_style=args.weight_decay_incr_style, |
|
use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler, |
|
override_opt_param_scheduler=args.override_opt_param_scheduler) |
|
|
|
return opt_param_scheduler |
|
|
|
def load_model_weights_only(model_provider_func): |
|
"""Setup model and optimizer.""" |
|
args = get_args() |
|
print_rank_0('***>>>>> Args:{}'.format(args)) |
|
|
|
model = get_model(model_provider_func) |
|
|
|
optimizer = None |
|
lr_scheduler = None |
|
|
|
if args.deepspeed: |
|
|
|
if 'zero_optimization' in args.deepspeed_config_dict: |
|
del args.deepspeed_config_dict['zero_optimization'] |
|
|
|
model, optimizer, _, lr_scheduler = deepspeed.initialize( |
|
model=model[0], |
|
config=args.deepspeed_config_dict |
|
) |
|
|
|
assert not isinstance(model, deepspeed.PipelineEngine), \ |
|
'Weight loading only mode is not supported in pipeline parallelism yet.' |
|
|
|
model = [model] |
|
|
|
print_datetime('before load checkpoint') |
|
if args.load is not None: |
|
iteration = load_checkpoint(model, optimizer, lr_scheduler, strict=True, load_only_weights=True) |
|
|
|
print_datetime('after load checkpoint weights') |
|
|
|
return model, optimizer, lr_scheduler |
|
|
|
|
|
def setup_model_and_optimizer(model_provider_func, |
|
model_type, |
|
no_wd_decay_cond=None, |
|
scale_lr_cond=None, |
|
lr_mult=1.0, |
|
teacher=False, |
|
data_post_process=None, |
|
build_train_valid_test_datasets_provider=None): |
|
"""Setup model and optimizer.""" |
|
args = get_args() |
|
|
|
model = get_model(model_provider_func, model_type) |
|
|
|
|
|
student_global_steps = 0 |
|
if args.kd or args.mos: |
|
model, _, _, _ = deepspeed.initialize( |
|
model=model[0], |
|
args=args, |
|
mpu=mpu if args.no_pipeline_parallel else None, |
|
config=args.deepspeed_config_dict, |
|
) |
|
model = [model] |
|
if args.load is not None: |
|
args.iteration = load_checkpoint(model, None, None, strict=False) |
|
else: |
|
args.iteration = 0 |
|
student_global_steps = model[0].global_steps |
|
print_rank_0('***>>>>> Student model, global step:{}'.format(student_global_steps)) |
|
|
|
if args.compression_training: |
|
model, _, _, _ = deepspeed.initialize( |
|
model=model[0], |
|
args=args, |
|
mpu=mpu if args.no_pipeline_parallel else None, |
|
config=args.deepspeed_config_dict, |
|
) |
|
model = [model] |
|
model = [init_compression(model[0].module, args.deepspeed_config_dict, mpu)] |
|
|
|
unwrapped_model = unwrap_model(model, |
|
(torchDDP, LocalDDP, Float16Module)) |
|
|
|
if args.inference: |
|
optimizer = None |
|
opt_param_scheduler = None |
|
else: |
|
if teacher: |
|
optimizer = None |
|
else: |
|
optimizer = get_megatron_optimizer(model, no_wd_decay_cond, |
|
scale_lr_cond, lr_mult) |
|
|
|
opt_param_scheduler = get_optimizer_param_scheduler(optimizer) |
|
|
|
if args.deepspeed: |
|
print_rank_0("DeepSpeed is enabled.") |
|
pp = mpu.get_pipeline_model_parallel_world_size() |
|
if args.data_efficiency_curriculum_learning and build_train_valid_test_datasets_provider is not None: |
|
train_ds = None |
|
|
|
|
|
if mpu.get_tensor_model_parallel_rank() == 0: |
|
|
|
if args.train_samples: |
|
train_samples = args.train_samples |
|
update_train_iters(args) |
|
else: |
|
train_samples = args.train_iters * args.global_batch_size |
|
|
|
|
|
|
|
|
|
|
|
eval_iters = (args.train_iters // args.eval_interval + 1) * \ |
|
args.eval_iters |
|
test_iters = args.eval_iters |
|
train_val_test_num_samples = [train_samples, |
|
eval_iters * args.global_batch_size, |
|
test_iters * args.global_batch_size] |
|
|
|
train_ds, _, _ = build_train_valid_test_datasets_provider( |
|
train_val_test_num_samples) |
|
model, optimizer, args.deepspeed_dataloader, opt_param_scheduler = deepspeed.initialize( |
|
model=model[0], |
|
optimizer=optimizer, |
|
args=args, |
|
lr_scheduler=opt_param_scheduler, |
|
training_data=train_ds, |
|
mpu=mpu if args.no_pipeline_parallel else None, |
|
config=args.deepspeed_config_dict, |
|
) |
|
model.set_data_post_process_func(data_post_process) |
|
else: |
|
model, optimizer, _, opt_param_scheduler = deepspeed.initialize( |
|
model=model[0], |
|
optimizer=optimizer, |
|
args=args, |
|
lr_scheduler=opt_param_scheduler, |
|
mpu=mpu if args.no_pipeline_parallel else None, |
|
config=args.deepspeed_config_dict, |
|
) |
|
if isinstance(model, deepspeed.PipelineEngine): |
|
|
|
model.set_batch_fn(model.module._megatron_batch_fn) |
|
|
|
assert model.grid.get_pipe_parallel_rank() == mpu.get_pipeline_model_parallel_rank() |
|
assert model.grid.get_slice_parallel_rank() == mpu.get_tensor_model_parallel_rank() |
|
assert model.grid.get_data_parallel_rank() == mpu.get_data_parallel_rank() |
|
model = [model] |
|
|
|
|
|
no_post_init_checkpoint_loading = args.kd or args.mos |
|
if not no_post_init_checkpoint_loading: |
|
if args.load is not None: |
|
timers = get_timers() |
|
timers('load-checkpoint', log_level=0).start(barrier=True) |
|
args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler) |
|
timers('load-checkpoint').stop(barrier=True) |
|
timers.log(['load-checkpoint']) |
|
else: |
|
args.iteration = 0 |
|
else: |
|
model[0].global_steps = student_global_steps |
|
|
|
|
|
if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1: |
|
assert args.DDP_impl == 'local' |
|
|
|
|
|
if args.iteration == 0 and len(unwrapped_model) == 1 \ |
|
and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'): |
|
print_rank_0("Initializing ICT from pretrained BERT model") |
|
unwrapped_model[0].init_state_dict_from_bert() |
|
if args.fp16: |
|
optimizer.reload_model_params() |
|
|
|
|
|
if args.random_ltd: |
|
model[0] = convert_to_random_ltd(model[0], ParallelTransformerLayer) |
|
|
|
return model, optimizer, opt_param_scheduler |
|
|
|
|
|
|
|
def train_step(forward_step_func, data_iterator, |
|
model, optimizer, opt_param_scheduler, config): |
|
"""Single training step.""" |
|
args = get_args() |
|
timers = get_timers() |
|
hpu_transformer_engine = get_accelerator().device_name() == 'hpu' and get_args().transformer_impl == "transformer_engine" |
|
if args.deepspeed and args.ds_pipeline_enabled: |
|
skipped_iter = 0 |
|
num_zeros_in_grad = 0 |
|
assert isinstance(model[0], deepspeed.PipelineEngine) |
|
|
|
with fp8_autocast(enabled=True, fp8_recipe=get_fp8_recipe(args)) \ |
|
if hpu_transformer_engine else nullcontext(): |
|
loss = model[0].train_batch(data_iter=data_iterator) |
|
|
|
grad_norm = model[0].get_global_grad_norm() |
|
return {'lm loss' : loss}, skipped_iter, grad_norm, num_zeros_in_grad |
|
|
|
|
|
if not args.deepspeed: |
|
if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp: |
|
for partition in model: |
|
partition.zero_grad_buffer() |
|
optimizer.zero_grad() |
|
|
|
|
|
timers('forward-backward', log_level=1).start( |
|
barrier=args.barrier_with_L1_time) |
|
forward_backward_func = get_forward_backward_func() |
|
if args.mos or args.kd: |
|
|
|
|
|
|
|
args.teacher_forward = True |
|
|
|
|
|
if args.timing_log_level < 2: |
|
config.timers = None |
|
|
|
losses_reduced = forward_backward_func( |
|
forward_step_func=forward_step_func, |
|
data_iterator=data_iterator, |
|
model=model, |
|
num_microbatches=get_num_microbatches(), |
|
seq_length=args.seq_length, |
|
micro_batch_size=args.micro_batch_size, |
|
decoder_seq_length=args.decoder_seq_length, |
|
forward_only=False) |
|
|
|
|
|
if config.timers is None: |
|
config.timers = timers |
|
timers('forward-backward').stop() |
|
if args.mos or args.kd: |
|
args.teacher_forward = False |
|
|
|
|
|
if args.empty_unused_memory_level >= 1: |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if not args.deepspeed: |
|
optimizer.reduce_model_grads(args, timers) |
|
|
|
|
|
if args.vision_pretraining and args.vision_pretraining_type == "dino": |
|
unwrapped_model = unwrap_model(model[0], |
|
(torchDDP, LocalDDP, Float16Module)) |
|
unwrapped_model.cancel_gradients_last_layer(args.curr_iteration) |
|
|
|
|
|
timers('optimizer', log_level=1).start(barrier=args.barrier_with_L1_time) |
|
if args.deepspeed: |
|
increment = get_num_microbatches() * \ |
|
args.micro_batch_size * \ |
|
args.data_parallel_size |
|
model[0].step(lr_kwargs={'increment': increment}) |
|
update_successful = model[0].was_step_applied() |
|
else: |
|
update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers) |
|
timers('optimizer').stop() |
|
|
|
|
|
if not args.deepspeed and update_successful: |
|
optimizer.gather_model_params(args, timers) |
|
|
|
|
|
if args.vision_pretraining and args.vision_pretraining_type == "dino": |
|
unwrapped_model = unwrap_model(model[0], |
|
(torchDDP, LocalDDP, Float16Module)) |
|
unwrapped_model.update_momentum(args.curr_iteration) |
|
|
|
|
|
if args.deepspeed: |
|
skipped_iter = 0 |
|
grad_norm = None |
|
num_zeros_in_grad = None |
|
|
|
loss_reduced = {} |
|
for key in losses_reduced[0]: |
|
losses_reduced_for_key = [x[key] for x in losses_reduced] |
|
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key) |
|
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad |
|
else: |
|
if update_successful: |
|
increment = get_num_microbatches() * \ |
|
args.micro_batch_size * \ |
|
args.data_parallel_size |
|
opt_param_scheduler.step(increment=increment) |
|
skipped_iter = 0 |
|
else: |
|
skipped_iter = 1 |
|
|
|
|
|
if args.empty_unused_memory_level >= 2: |
|
torch.cuda.empty_cache() |
|
|
|
if mpu.is_pipeline_last_stage(ignore_virtual=True): |
|
|
|
loss_reduced = {} |
|
for key in losses_reduced[0]: |
|
losses_reduced_for_key = [x[key] for x in losses_reduced] |
|
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key) |
|
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad |
|
return {}, skipped_iter, grad_norm, num_zeros_in_grad |
|
|
|
|
|
def training_log(loss_dict, total_loss_dict, learning_rate, iteration, |
|
loss_scale, report_memory_flag, skipped_iter, |
|
grad_norm, params_norm, num_zeros_in_grad, |
|
model=None, optimizer=None): |
|
"""Log training information such as losses, timing, ....""" |
|
args = get_args() |
|
timers = get_timers() |
|
writer = get_tensorboard_writer() |
|
|
|
|
|
advanced_iters_key = 'advanced iterations' |
|
skipped_iters_key = 'skipped iterations' |
|
nan_iters_key = 'nan iterations' |
|
|
|
if not skipped_iter: |
|
total_loss_dict[advanced_iters_key] = total_loss_dict.get( |
|
advanced_iters_key, 0) + 1 |
|
else: |
|
if advanced_iters_key not in total_loss_dict: |
|
total_loss_dict[advanced_iters_key] = 0 |
|
|
|
total_loss_dict[skipped_iters_key] = total_loss_dict.get( |
|
skipped_iters_key, 0) + skipped_iter |
|
|
|
got_nan = False |
|
for key in loss_dict: |
|
if not skipped_iter: |
|
total_loss_dict[key] = total_loss_dict.get( |
|
key, get_accelerator().FloatTensor([0.0])) + loss_dict[key] |
|
else: |
|
value = loss_dict[key].float().sum().item() |
|
is_nan = value == float('inf') or \ |
|
value == -float('inf') or \ |
|
value != value |
|
got_nan = got_nan or is_nan |
|
total_loss_dict[nan_iters_key] = total_loss_dict.get( |
|
nan_iters_key, 0) + int(got_nan) |
|
|
|
|
|
timers_to_log = [ |
|
'forward-backward', |
|
'forward-compute', |
|
'backward-compute', |
|
'batch-generator', |
|
'forward-recv', |
|
'forward-send', |
|
'backward-recv', |
|
'backward-send', |
|
'forward-send-forward-recv', |
|
'forward-send-backward-recv', |
|
'backward-send-forward-recv', |
|
'backward-send-backward-recv', |
|
'forward-backward-send-forward-backward-recv', |
|
'layernorm-grads-all-reduce', |
|
'embedding-grads-all-reduce', |
|
'grads-all-reduce', |
|
'grads-reduce-scatter', |
|
'params-all-gather', |
|
'optimizer-copy-to-main-grad', |
|
'optimizer-unscale-and-check-inf', |
|
'optimizer-clip-main-grad', |
|
'optimizer-count-zeros', |
|
'optimizer-inner-step', |
|
'optimizer-copy-main-to-model-params', |
|
'optimizer'] |
|
|
|
|
|
batch_size = args.micro_batch_size * args.data_parallel_size * \ |
|
get_num_microbatches() |
|
|
|
total_iterations = total_loss_dict[advanced_iters_key] + \ |
|
total_loss_dict[skipped_iters_key] |
|
|
|
|
|
|
|
if args.log_timers_to_tensorboard and \ |
|
(iteration % args.tensorboard_log_interval == 0): |
|
timers.write(timers_to_log, writer, iteration, |
|
normalizer=total_iterations) |
|
if writer and (iteration % args.tensorboard_log_interval == 0): |
|
writer.add_scalar('steps-vs-samples/y=steps,x=samples', iteration, args.consumed_train_samples) |
|
writer.add_scalar('steps-vs-samples/y=samples,x=steps', args.consumed_train_samples, iteration) |
|
writer.add_scalar('steps-vs-tokens/y=steps,x=tokens', iteration, args.consumed_train_tokens) |
|
writer.add_scalar('steps-vs-tokens/y=tokens,x=steps', args.consumed_train_tokens, iteration) |
|
if args.log_learning_rate_to_tensorboard: |
|
writer.add_scalar('learning-rate/learning-rate', learning_rate, iteration) |
|
writer.add_scalar('learning-rate/learning-rate vs samples', learning_rate, |
|
args.consumed_train_samples) |
|
writer.add_scalar('learning-rate/learning-rate vs tokens', learning_rate, |
|
args.consumed_train_tokens) |
|
if args.log_batch_size_to_tensorboard: |
|
writer.add_scalar('batch-size/batch-size', batch_size, iteration) |
|
writer.add_scalar('batch-size/batch-size vs samples', batch_size, |
|
args.consumed_train_samples) |
|
writer.add_scalar('batch-size/batch-size vs tokens', batch_size, |
|
args.consumed_train_tokens) |
|
for key in loss_dict: |
|
writer.add_scalar(f"lm-loss-training/{key}", loss_dict[key], iteration) |
|
writer.add_scalar(f"lm-loss-training/{key}" + ' vs samples', loss_dict[key], |
|
args.consumed_train_samples) |
|
writer.add_scalar(f"lm-loss-training/{key}" + ' vs tokens', loss_dict[key], |
|
args.consumed_train_tokens) |
|
if args.fp16 and (loss_scale and args.log_loss_scale_to_tensorboard): |
|
writer.add_scalar('loss-scale/loss-scale', loss_scale, iteration) |
|
writer.add_scalar('loss-scale/loss-scale vs samples', loss_scale, |
|
args.consumed_train_samples) |
|
writer.add_scalar('loss-scale/loss-scale vs tokens', loss_scale, |
|
args.consumed_train_tokens) |
|
if args.log_world_size_to_tensorboard: |
|
writer.add_scalar('world-size/world-size', args.world_size, iteration) |
|
writer.add_scalar('world-size/world-size vs samples', args.world_size, |
|
args.consumed_train_samples) |
|
writer.add_scalar('world-size/world-size vs tokens', args.world_size, |
|
args.consumed_train_tokens) |
|
if grad_norm is not None: |
|
writer.add_scalar('grad-norm/grad-norm', grad_norm, iteration) |
|
writer.add_scalar('grad-norm/grad-norm vs samples', grad_norm, |
|
args.consumed_train_samples) |
|
writer.add_scalar('grad-norm/grad-norm vs tokens', grad_norm, |
|
args.consumed_train_tokens) |
|
if num_zeros_in_grad is not None: |
|
writer.add_scalar('num-zeros/num-zeros', num_zeros_in_grad, iteration) |
|
writer.add_scalar('num-zeros/num-zeros vs samples', num_zeros_in_grad, |
|
args.consumed_train_samples) |
|
writer.add_scalar('num-zeros/num-zeros vs tokens', num_zeros_in_grad, |
|
args.consumed_train_tokens) |
|
if params_norm is not None: |
|
writer.add_scalar('params-norm/params-norm', params_norm, iteration) |
|
writer.add_scalar('params-norm/params-norm vs samples', params_norm, |
|
args.consumed_train_samples) |
|
writer.add_scalar('params-norm/params-norm vs tokens', params_norm, |
|
args.consumed_train_tokens) |
|
if hasattr(args, 'actual_seq_length'): |
|
writer.add_scalar('seqlen/actual_seq_length', args.actual_seq_length, |
|
iteration) |
|
writer.add_scalar('seqlen/actual_seq_length vs samples', args.actual_seq_length, |
|
args.consumed_train_samples) |
|
writer.add_scalar('seqlen/actual_seq_length vs tokens', args.actual_seq_length, |
|
args.consumed_train_tokens) |
|
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning: |
|
writer.add_scalar('seqlen/curriculum_seqlen', args.curriculum_seqlen, |
|
iteration) |
|
writer.add_scalar('seqlen/curriculum_seqlen vs samples', args.curriculum_seqlen, |
|
args.consumed_train_samples) |
|
writer.add_scalar('seqlen/curriculum_seqlen vs tokens', args.curriculum_seqlen, |
|
args.consumed_train_tokens) |
|
if args.random_ltd: |
|
writer.add_scalar('seqlen/random_ltd_reserved_length', args.random_ltd_reserved_length, |
|
iteration) |
|
writer.add_scalar('seqlen/random_ltd_reserved_length vs samples', args.random_ltd_reserved_length, |
|
args.consumed_train_samples) |
|
writer.add_scalar('seqlen/random_ltd_reserved_length vs tokens', args.random_ltd_reserved_length, |
|
args.consumed_train_tokens) |
|
if args.log_memory_to_tensorboard: |
|
mem_stats = torch.cuda.memory_stats() |
|
writer.add_scalar( |
|
"mem-reserved-bytes", |
|
mem_stats["reserved_bytes.all.current"], |
|
iteration, |
|
) |
|
writer.add_scalar( |
|
"mem-allocated-bytes", |
|
mem_stats["allocated_bytes.all.current"], |
|
iteration, |
|
) |
|
writer.add_scalar( |
|
"mem-allocated-count", |
|
mem_stats["allocation.all.current"], |
|
iteration, |
|
) |
|
|
|
if iteration % args.tensorboard_log_interval == 0: |
|
|
|
|
|
if args.log_optimizer_states_to_tensorboard and optimizer is not None: |
|
opt_stats = [0.0] * 8 |
|
opt_stats_2 = [0.0] * 4 |
|
for _, group in enumerate(optimizer.param_groups): |
|
for _, param in enumerate(group['params']): |
|
opt_stats[0] += (torch.norm(optimizer.state[param]['exp_avg_sq']).item())**2 |
|
opt_stats[1] += (torch.norm(optimizer.state[param]['exp_avg_sq'].sqrt()).item())**2 |
|
opt_stats[2] += (torch.norm(optimizer.state[param]['exp_avg']).item())**2 |
|
opt_stats[3] += (torch.norm(param).item())**2 |
|
opt_stats[4] += torch.norm(optimizer.state[param]['exp_avg_sq'],p=1).item() |
|
opt_stats[5] += torch.norm(optimizer.state[param]['exp_avg_sq'].sqrt(),p=1).item() |
|
opt_stats[6] += torch.norm(optimizer.state[param]['exp_avg'],p=1).item() |
|
opt_stats[7] += torch.norm(param,p=1).item() |
|
opt_stats_2[0] = max(opt_stats_2[0], abs(optimizer.state[param]['exp_avg_sq'].max().item()), abs(optimizer.state[param]['exp_avg_sq'].min().item())) |
|
opt_stats_2[1] = max(opt_stats_2[1], optimizer.state[param]['exp_avg_sq'].sqrt().abs_().max().item()) |
|
opt_stats_2[2] = max(opt_stats_2[2], abs(optimizer.state[param]['exp_avg'].max().item()), abs(optimizer.state[param]['exp_avg'].min().item())) |
|
opt_stats_2[3] = max(opt_stats_2[3], abs(param.max().item()), abs(param.min().item())) |
|
|
|
if args.zero_stage > 0: |
|
|
|
opt_stats = get_accelerator().FloatTensor(opt_stats) |
|
torch.distributed.all_reduce(opt_stats, group=mpu.get_sequence_data_parallel_group()) |
|
opt_stats_2 = get_accelerator().FloatTensor(opt_stats_2) |
|
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX, |
|
group=mpu.get_sequence_data_parallel_group()) |
|
|
|
if args.tensor_model_parallel_size > 1: |
|
opt_stats = get_accelerator().FloatTensor(opt_stats) |
|
torch.distributed.all_reduce(opt_stats, group=mpu.get_tensor_model_parallel_group()) |
|
opt_stats_2 = get_accelerator().FloatTensor(opt_stats_2) |
|
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX, |
|
group=mpu.get_tensor_model_parallel_group()) |
|
|
|
if args.pipeline_model_parallel_size > 1: |
|
opt_stats = get_accelerator().FloatTensor(opt_stats) |
|
torch.distributed.all_reduce(opt_stats, group=mpu.get_pipeline_model_parallel_group()) |
|
opt_stats_2 = get_accelerator().FloatTensor(opt_stats_2) |
|
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX, |
|
group=mpu.get_pipeline_model_parallel_group()) |
|
|
|
|
|
if writer and is_last_rank(): |
|
writer.add_scalar('optimizer/variance_l2 vs tokens', opt_stats[0]**0.5, args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/variance_sqrt_l2 vs tokens', opt_stats[1]**0.5, args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/momentum_l2 vs tokens', opt_stats[2]**0.5, args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/weight_l2 vs tokens', opt_stats[3]**0.5, args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/variance_l1 vs tokens', opt_stats[4], args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/variance_sqrt_l1 vs tokens', opt_stats[5], args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/momentum_l1 vs tokens', opt_stats[6], args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/weight_l1 vs tokens', opt_stats[7], args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/variance_abs_max vs tokens', opt_stats_2[0], args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/variance_sqrt_abs_max vs tokens', opt_stats_2[1], args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/momentum_abs_max vs tokens', opt_stats_2[2], args.consumed_train_tokens) |
|
writer.add_scalar('optimizer/weight_abs_max vs tokens', opt_stats_2[3], args.consumed_train_tokens) |
|
|
|
writer.add_scalar('optimizer/variance_l2', opt_stats[0]**0.5, iteration) |
|
writer.add_scalar('optimizer/variance_sqrt_l2', opt_stats[1]**0.5, iteration) |
|
writer.add_scalar('optimizer/momentum_l2', opt_stats[2]**0.5, iteration) |
|
writer.add_scalar('optimizer/weight_l2', opt_stats[3]**0.5, iteration) |
|
writer.add_scalar('optimizer/variance_l1', opt_stats[4], iteration) |
|
writer.add_scalar('optimizer/variance_sqrt_l1', opt_stats[5], iteration) |
|
writer.add_scalar('optimizer/momentum_l1', opt_stats[6], iteration) |
|
writer.add_scalar('optimizer/weight_l1', opt_stats[7], iteration) |
|
writer.add_scalar('optimizer/variance_abs_max', opt_stats_2[0], iteration) |
|
writer.add_scalar('optimizer/variance_sqrt_abs_max', opt_stats_2[1], iteration) |
|
writer.add_scalar('optimizer/momentum_abs_max', opt_stats_2[2], iteration) |
|
writer.add_scalar('optimizer/weight_abs_max', opt_stats_2[3], iteration) |
|
|
|
if iteration % args.log_interval == 0: |
|
elapsed_time = timers('interval-time').elapsed(barrier=True) |
|
elapsed_time_per_iteration = elapsed_time / total_iterations |
|
seq_len = args.seq_length |
|
if hasattr(args, 'actual_seq_length'): |
|
seq_len = args.actual_seq_length |
|
samples_per_sec, tflops, approx_parameters_in_billions = throughput_calculator( |
|
model, |
|
args, |
|
elapsed_time, |
|
total_iterations |
|
) |
|
samples_per_sec_per_replica = samples_per_sec / args.data_parallel_size |
|
tokens_per_sec = samples_per_sec * seq_len |
|
tokens_per_sec_per_replica = tokens_per_sec / args.data_parallel_size |
|
tokens_per_gpu_per_second = tokens_per_sec / args.world_size |
|
tokens_per_gpu_per_second_per_replica = tokens_per_gpu_per_second / args.data_parallel_size |
|
if wandb is not None and getattr(wandb, 'run', None) is not None: |
|
tput = { |
|
'throughput/iteration-time': elapsed_time_per_iteration, |
|
'throughput/samples_per_sec': samples_per_sec, |
|
'throughput/samples_per_sec_per_replica': samples_per_sec_per_replica, |
|
'throughput/tokens_per_sec': tokens_per_sec, |
|
'throughput/tokens_per_sec_per_replica': tokens_per_sec_per_replica, |
|
'throughput/tokens_per_gpu_per_sec': tokens_per_gpu_per_second, |
|
'throughput/tokens_per_gpu_per_sec_per_replica': tokens_per_gpu_per_second_per_replica, |
|
'throughput/tflops': tflops, |
|
'throughput/approx_params_in_billions': approx_parameters_in_billions, |
|
'throughput/elapsed_ms_per_iteration': elapsed_time_per_iteration, |
|
} |
|
wandb.run.log(tput) |
|
if writer: |
|
if args.log_timers_to_tensorboard: |
|
writer.add_scalar('iteration-time/iteration-time', |
|
elapsed_time_per_iteration, iteration) |
|
writer.add_scalar('iteration-time/iteration-time vs samples', |
|
elapsed_time_per_iteration, args.consumed_train_samples) |
|
writer.add_scalar('iteration-time/iteration-time vs tokens', |
|
elapsed_time_per_iteration, args.consumed_train_tokens) |
|
log_string = ' iteration {:8d}/{:8d} |'.format( |
|
iteration, args.train_iters) |
|
log_string += ' consumed samples: {:12d} |'.format( |
|
args.consumed_train_samples) |
|
log_string += ' consumed tokens: {:12d} |'.format( |
|
args.consumed_train_tokens) |
|
log_string += ' elapsed time per iteration (ms): {:.1f} |'.format( |
|
elapsed_time_per_iteration * 1000.0) |
|
log_string += ' learning rate: {:.3E} |'.format(learning_rate) |
|
log_string += ' global batch size: {:5d} |'.format(batch_size) |
|
for key in total_loss_dict: |
|
if key not in [advanced_iters_key, skipped_iters_key, |
|
nan_iters_key]: |
|
avg = total_loss_dict[key].item() / \ |
|
float(max(1, total_loss_dict[advanced_iters_key])) |
|
if avg > 0.0: |
|
log_string += ' {}: {:.6E} |'.format(key, avg) |
|
total_loss_dict[key] = get_accelerator().FloatTensor([0.0]) |
|
if loss_scale is not None: |
|
log_string += ' loss scale: {:.1f} |'.format(loss_scale) |
|
if grad_norm is not None: |
|
log_string += ' grad norm: {:.3f} |'.format(grad_norm) |
|
if num_zeros_in_grad is not None: |
|
log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad) |
|
if params_norm is not None: |
|
log_string += ' params norm: {:.3f} |'.format(params_norm) |
|
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning: |
|
log_string += ' curriculum seqlen: {:5d} |'.format(args.curriculum_seqlen) |
|
if args.random_ltd: |
|
log_string += ' random ltd reserved length: {:5d} |'.format(args.random_ltd_reserved_length) |
|
log_string += ' actual seqlen: {:5d} |'.format(seq_len) |
|
log_string += ' number of skipped iterations: {:3d} |'.format( |
|
total_loss_dict[skipped_iters_key]) |
|
log_string += ' number of nan iterations: {:3d} |'.format( |
|
total_loss_dict[nan_iters_key]) |
|
log_string += ' samples per second: {:.3f} |'.format(samples_per_sec) |
|
log_string += ' tokens per gpu per second (tgs): {:.3f} |'.format(tokens_per_gpu_per_second) |
|
log_string += ' TFLOPs: {:.2f} |'.format(tflops) |
|
total_loss_dict[advanced_iters_key] = 0 |
|
total_loss_dict[skipped_iters_key] = 0 |
|
total_loss_dict[nan_iters_key] = 0 |
|
print_rank_last(log_string) |
|
if report_memory_flag and learning_rate > 0.: |
|
|
|
report_memory('(after {} iterations)'.format(iteration)) |
|
report_memory_flag = False |
|
timers.log(timers_to_log, normalizer=args.log_interval) |
|
|
|
return report_memory_flag |
|
|
|
|
|
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler): |
|
timers = get_timers() |
|
|
|
|
|
timers('save-checkpoint', log_level=0).start(barrier=True) |
|
save_checkpoint(iteration, model, optimizer, opt_param_scheduler) |
|
timers('save-checkpoint').stop(barrier=True) |
|
checkpoint_throughput_calculator(model, timers('save-checkpoint').elapsed(reset=False)) |
|
timers.log(['save-checkpoint']) |
|
|
|
|
|
def train(forward_step_func, model, optimizer, opt_param_scheduler, |
|
train_data_iterator, valid_data_iterator, |
|
process_non_loss_data_func): |
|
"""Train the model function.""" |
|
args = get_args() |
|
timers = get_timers() |
|
|
|
|
|
write_args_to_tensorboard() |
|
|
|
setup_profiler(args, get_accelerator().device_name()) |
|
|
|
if args.random_ltd: |
|
|
|
import random |
|
random.seed(args.seed + torch.distributed.get_rank()) |
|
|
|
|
|
for model_module in model: |
|
model_module.train() |
|
|
|
|
|
total_loss_dict = {} |
|
|
|
|
|
iteration = args.iteration |
|
|
|
|
|
config = core_transformer_config_from_args(args) |
|
if not args.deepspeed: |
|
config.grad_scale_func = optimizer.scale_loss |
|
config.timers = timers |
|
|
|
timers('interval-time', log_level=0).start(barrier=True) |
|
print_datetime('before the start of training step') |
|
report_memory_flag = True |
|
if args.random_ltd: |
|
assert model[0].random_ltd_enabled() |
|
args.random_ltd_layer_num = model[0].random_ltd_scheduler.get_random_ltd_layer_num() |
|
|
|
while iteration < args.train_iters and (args.train_tokens is None or \ |
|
args.consumed_train_tokens < args.train_tokens): |
|
trigger(on_step_begin) |
|
update_num_microbatches(args.consumed_train_samples) |
|
if args.deepspeed: |
|
|
|
global_batch_size = mpu.get_data_parallel_world_size() * \ |
|
args.micro_batch_size * \ |
|
get_num_microbatches() |
|
model[0].set_train_batch_size(global_batch_size) |
|
|
|
if args.curriculum_learning_legacy and not args.no_pipeline_parallel: |
|
curriculum_seqlen = args.curriculum_scheduler.update_difficulty( \ |
|
args.iteration + 1) |
|
if iteration == 0 or curriculum_seqlen != args.curriculum_seqlen: |
|
if args.use_rotary_position_embeddings: |
|
update_rotary_pos_emb(curriculum_seqlen) |
|
args.curriculum_seqlen = curriculum_seqlen |
|
args.curr_iteration = iteration |
|
loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \ |
|
train_step(forward_step_func, |
|
train_data_iterator, |
|
model, |
|
optimizer, |
|
opt_param_scheduler, |
|
config) |
|
iteration += 1 |
|
args.iteration = iteration |
|
new_samples = mpu.get_data_parallel_world_size() * \ |
|
args.micro_batch_size * \ |
|
get_num_microbatches() |
|
args.consumed_train_samples += new_samples |
|
|
|
args.actual_seq_length = args.seq_length |
|
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning: |
|
args.actual_seq_length = args.curriculum_seqlen |
|
if args.random_ltd: |
|
args.random_ltd_reserved_length = model[0].random_ltd_scheduler.get_current_seq() |
|
if args.random_ltd_reserved_length < args.actual_seq_length: |
|
args.actual_seq_length = (args.actual_seq_length * (args.num_layers - args.random_ltd_layer_num) + args.random_ltd_reserved_length * args.random_ltd_layer_num) // args.num_layers |
|
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning: |
|
if hasattr(args, 'data_efficiency_curriculum_learning_numel'): |
|
act_mbsz = args.data_efficiency_curriculum_learning_numel / args.curriculum_seqlen |
|
act_token = act_mbsz * args.actual_seq_length |
|
args.consumed_train_tokens += mpu.get_data_parallel_world_size() * \ |
|
get_num_microbatches() * act_token |
|
else: |
|
args.consumed_train_tokens += new_samples * args.actual_seq_length |
|
else: |
|
args.consumed_train_tokens += new_samples * args.actual_seq_length |
|
|
|
|
|
if args.deepspeed: |
|
if hasattr(model[0].optimizer, 'cur_scale'): |
|
loss_scale = model[0].optimizer.cur_scale |
|
else: |
|
loss_scale = None |
|
else: |
|
loss_scale = optimizer.get_loss_scale().item() |
|
params_norm = None |
|
if args.log_params_norm: |
|
params_norm = calc_params_l2_norm(model) |
|
report_memory_flag = training_log(loss_dict, total_loss_dict, |
|
optimizer.param_groups[0]['lr'], |
|
iteration, loss_scale, |
|
report_memory_flag, skipped_iter, |
|
grad_norm, params_norm, num_zeros_in_grad, |
|
model, optimizer) |
|
|
|
|
|
if args.adlr_autoresume and \ |
|
(iteration % args.adlr_autoresume_interval == 0): |
|
check_adlr_autoresume_termination(iteration, model, optimizer, |
|
opt_param_scheduler) |
|
|
|
|
|
if args.eval_interval and iteration % args.eval_interval == 0 and \ |
|
args.do_valid: |
|
prefix = 'iteration {}'.format(iteration) |
|
eval_loss = evaluate_and_print_results(prefix, forward_step_func, |
|
valid_data_iterator, model, |
|
iteration, |
|
process_non_loss_data_func, |
|
config, False) |
|
|
|
if args.eval_loss_exit_value is not None and eval_loss <= args.eval_loss_exit_value: |
|
if args.save: |
|
save_checkpoint_and_time(iteration, model, optimizer, |
|
opt_param_scheduler) |
|
torch.distributed.barrier() |
|
print_datetime(f"Reached target loss value: {args.eval_loss_exit_value}. " |
|
f"Stopping the training at iteration: {iteration} with loss: {eval_loss}") |
|
sys.exit() |
|
|
|
|
|
saved_checkpoint = False |
|
if args.exit_signal_handler: |
|
signal_handler = get_signal_handler() |
|
if any(signal_handler.signals_received()): |
|
save_checkpoint_and_time(iteration, model, optimizer, |
|
opt_param_scheduler) |
|
print_datetime('exiting program after receiving SIGTERM.') |
|
sys.exit() |
|
|
|
if args.save and args.save_interval and \ |
|
iteration % args.save_interval == 0: |
|
save_checkpoint_and_time(iteration, model, optimizer, |
|
opt_param_scheduler) |
|
saved_checkpoint = True |
|
|
|
|
|
if args.exit_duration_in_mins: |
|
train_time = (time.time() - _TRAIN_START_TIME) / 60.0 |
|
done_cuda = get_accelerator().IntTensor( |
|
[train_time > args.exit_duration_in_mins]) |
|
torch.distributed.all_reduce( |
|
done_cuda, op=torch.distributed.ReduceOp.MAX) |
|
done = done_cuda.item() |
|
if done: |
|
if not saved_checkpoint: |
|
save_checkpoint_and_time(iteration, model, optimizer, |
|
opt_param_scheduler) |
|
print_datetime('exiting program after {} minutes'.format(train_time)) |
|
sys.exit() |
|
|
|
|
|
if args.exit_interval and iteration % args.exit_interval == 0: |
|
if args.save and not saved_checkpoint: |
|
save_checkpoint_and_time(iteration, model, optimizer, |
|
opt_param_scheduler) |
|
torch.distributed.barrier() |
|
print_datetime('exiting program at iteration {}'.format(iteration)) |
|
sys.exit() |
|
trigger(on_step_end) |
|
|
|
|
|
if found_kill_switch(): |
|
if not saved_checkpoint: |
|
save_checkpoint_and_time(iteration, model, optimizer, |
|
opt_param_scheduler) |
|
print_datetime(f"Detected kill switch at {args.kill_switch_path}, " |
|
f"iteration={iteration}. Exiting") |
|
torch.distributed.barrier() |
|
sys.exit() |
|
|
|
return iteration |
|
|
|
|
|
def evaluate(forward_step_func, |
|
data_iterator, |
|
model, |
|
process_non_loss_data_func, |
|
config, |
|
verbose=False): |
|
"""Evaluation.""" |
|
args = get_args() |
|
|
|
if args.vision_pretraining and args.vision_pretraining_type == "dino": |
|
compute_feature_bank(model) |
|
|
|
|
|
for model_module in model: |
|
model_module.eval() |
|
|
|
if args.curriculum_learning_legacy and not args.no_pipeline_parallel: |
|
|
|
|
|
|
|
|
|
|
|
if args.curriculum_seqlen < args.seq_length: |
|
args.curriculum_seqlen = args.seq_length |
|
if args.use_rotary_position_embeddings: |
|
update_rotary_pos_emb(args.curriculum_seqlen) |
|
model[0].reset_activation_shape() |
|
|
|
if args.eval_micro_batch_size != args.micro_batch_size: |
|
reset_cached_broadcast_sizes() |
|
model[0].reset_activation_shape() |
|
|
|
total_loss_dict = {} |
|
|
|
with torch.no_grad(): |
|
iteration = 0 |
|
total_iterations = args.eval_iters |
|
if args.eval_iters == -1: |
|
print_rank_0(F"Evaluation on the entire set as eval-iters is set to {args.eval_iters}") |
|
samples_per_iteration = mpu.get_data_parallel_world_size() \ |
|
* args.eval_micro_batch_size \ |
|
* get_num_eval_microbatches() |
|
total_iterations = math.ceil(args.eval_total_samples / samples_per_iteration) |
|
print_rank_0(F"Evaluation Iterations: {total_iterations}, Total Eval Samples: {args.eval_total_samples}, samples per iteration: {samples_per_iteration}") |
|
args.consumed_valid_samples = 0 |
|
num_eval_microbatches = get_num_eval_microbatches() |
|
while iteration < total_iterations: |
|
iteration += 1 |
|
if iteration == total_iterations and args.eval_iters == -1: |
|
num_eval_microbatches = math.ceil((args.eval_total_samples - args.consumed_valid_samples) / \ |
|
(mpu.get_data_parallel_world_size() * args.eval_micro_batch_size)) |
|
if verbose and iteration % args.log_interval == 0: |
|
print_rank_0('Evaluating iter {}/{}'.format(iteration, |
|
args.eval_iters)) |
|
|
|
forward_backward_func = get_forward_backward_func() |
|
|
|
config.timers = None |
|
if args.deepspeed and args.ds_pipeline_enabled: |
|
|
|
assert isinstance(model, list) and len(model) == 1 |
|
loss = model[0].eval_batch(data_iterator, eval_micro_batches=num_eval_microbatches) |
|
loss_dicts = [{'lm loss' : loss}] * num_eval_microbatches |
|
else: |
|
assert args.micro_batch_size == args.eval_micro_batch_size, \ |
|
"evaluate (training) - Megatron's forward_backward_func options - " \ |
|
"Unsupported for split micro batch size" |
|
loss_dicts = forward_backward_func( |
|
forward_step_func=forward_step_func, |
|
data_iterator=data_iterator, |
|
model=model, |
|
num_microbatches=get_num_microbatches(), |
|
seq_length=args.seq_length, |
|
micro_batch_size=args.micro_batch_size, |
|
decoder_seq_length=args.decoder_seq_length, |
|
forward_only=True) |
|
config.timers = get_timers() |
|
|
|
|
|
if args.empty_unused_memory_level >= 1: |
|
torch.cuda.empty_cache() |
|
|
|
if mpu.is_pipeline_last_stage(ignore_virtual=True): |
|
|
|
for loss_dict in loss_dicts: |
|
for key in loss_dict: |
|
if 'moe' not in key: |
|
total_loss_dict[key] = total_loss_dict.get( |
|
key, get_accelerator().FloatTensor([0.0])) + loss_dict[key] |
|
|
|
args.consumed_valid_samples += mpu.get_data_parallel_world_size() \ |
|
* args.eval_micro_batch_size \ |
|
* num_eval_microbatches |
|
collected_non_loss_data = None |
|
if process_non_loss_data_func is not None and is_last_rank(): |
|
collected_non_loss_data = forward_backward_func( |
|
forward_step_func=forward_step_func, |
|
data_iterator=data_iterator, |
|
model=model, |
|
num_microbatches=get_num_microbatches(), |
|
seq_length=args.seq_length, |
|
micro_batch_size=args.micro_batch_size, |
|
decoder_seq_length=args.decoder_seq_length, |
|
forward_only=True, |
|
collect_non_loss_data=True) |
|
|
|
|
|
for model_module in model: |
|
model_module.train() |
|
|
|
for key in total_loss_dict: |
|
total_loss_dict[key] /= (((total_iterations-1) * get_num_eval_microbatches()) + num_eval_microbatches) |
|
|
|
if args.curriculum_learning_legacy and not args.no_pipeline_parallel: |
|
|
|
args.curriculum_seqlen = args.curriculum_scheduler.update_difficulty( \ |
|
args.iteration + 1) |
|
if args.curriculum_seqlen < args.seq_length: |
|
if args.use_rotary_position_embeddings: |
|
update_rotary_pos_emb(args.curriculum_seqlen) |
|
model[0].reset_activation_shape() |
|
|
|
if args.eval_micro_batch_size != args.micro_batch_size: |
|
reset_cached_broadcast_sizes() |
|
model[0].reset_activation_shape() |
|
return total_loss_dict, collected_non_loss_data |
|
|
|
def evaluate_and_print_results(prefix, forward_step_func, |
|
data_iterator, model, |
|
iteration, process_non_loss_data_func, config, |
|
verbose=False, write_to_tensorboard=True, test=False): |
|
"""Helper function to evaluate and dump results on screen.""" |
|
args = get_args() |
|
if write_to_tensorboard: |
|
writer = get_tensorboard_writer() |
|
else: |
|
writer = None |
|
|
|
total_loss_dict, collected_non_loss_data = evaluate( |
|
forward_step_func, data_iterator, model, |
|
process_non_loss_data_func, config, verbose) |
|
string = ' validation loss at {} | '.format(prefix) |
|
eval_loss = 0 |
|
for key in total_loss_dict: |
|
eval_loss = total_loss_dict[key].item() |
|
string += '{} value: {:.6E} | '.format(key, eval_loss) |
|
ppl = math.exp(min(20, eval_loss)) |
|
string += '{} PPL: {:.6E} | '.format(key, ppl) |
|
if writer and is_last_rank(): |
|
data_type = 'test' if test else 'validation' |
|
writer.add_scalar(f'lm-loss-validation/{key} {data_type}', |
|
eval_loss, |
|
iteration) |
|
writer.add_scalar(f'lm-loss-validation/{key} {data_type} vs samples', |
|
eval_loss, |
|
args.consumed_train_samples) |
|
writer.add_scalar(f'lm-loss-validation/{key} {data_type} vs tokens', |
|
eval_loss, |
|
args.consumed_train_tokens) |
|
if args.log_validation_ppl_to_tensorboard: |
|
writer.add_scalar(f'lm-loss-validation/{key} {data_type} ppl', ppl, |
|
iteration) |
|
writer.add_scalar(f'lm-loss-validation/{key} {data_type} ppl vs samples', |
|
ppl, args.consumed_train_samples) |
|
writer.add_scalar(f'lm-loss-validation/{key} {data_type} ppl vs tokens', |
|
ppl, args.consumed_train_tokens) |
|
|
|
if process_non_loss_data_func is not None and writer and is_last_rank(): |
|
process_non_loss_data_func(collected_non_loss_data, iteration, writer) |
|
|
|
length = len(string) + 1 |
|
print_rank_last('-' * length) |
|
print_rank_last(string) |
|
print_rank_last('-' * length) |
|
|
|
if args.eval_loss_exit_value is not None: |
|
eval_loss_tensor = get_accelerator().FloatTensor([eval_loss]) |
|
torch.distributed.all_reduce(eval_loss_tensor, op=torch.distributed.ReduceOp.MAX) |
|
eval_loss = eval_loss_tensor.item() |
|
|
|
return eval_loss |
|
|
|
|
|
def cyclic_iter(iter): |
|
while True: |
|
for x in iter: |
|
yield x |
|
|
|
|
|
def build_train_valid_test_datasets(build_train_valid_test_datasets_provider): |
|
"""Build pretraining datasets.""" |
|
|
|
args = get_args() |
|
|
|
|
|
if args.train_samples: |
|
train_samples = args.train_samples |
|
else: |
|
train_samples = args.train_iters * args.global_batch_size |
|
eval_iters = (args.train_iters // args.eval_interval + 1) * \ |
|
args.eval_iters |
|
test_iters = args.eval_iters |
|
if args.eval_iters == -1: |
|
print_rank_0("Evaluation iterations are set to -1") |
|
train_val_test_num_samples = [train_samples, -1, -1] |
|
else: |
|
train_val_test_num_samples = [train_samples, |
|
eval_iters * args.global_batch_size, |
|
test_iters * args.global_batch_size] |
|
print_rank_0(' > datasets target sizes (minimum size):') |
|
print_rank_0(' train: {}'.format(train_val_test_num_samples[0])) |
|
print_rank_0(' validation: {}'.format(train_val_test_num_samples[1])) |
|
print_rank_0(' test: {}'.format(train_val_test_num_samples[2])) |
|
|
|
|
|
return build_train_valid_test_datasets_provider(train_val_test_num_samples) |
|
|
|
|
|
def build_train_valid_test_data_loaders( |
|
build_train_valid_test_datasets_provider): |
|
"""Build pretraining data loaders.""" |
|
|
|
args = get_args() |
|
|
|
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None) |
|
|
|
print_rank_0('> building train, validation, and test datasets ...') |
|
|
|
|
|
if args.iteration > 0 and args.consumed_train_samples == 0: |
|
assert args.train_samples is None, \ |
|
'only backward compatiblity support for iteration-based training' |
|
args.consumed_train_samples = args.iteration * args.global_batch_size |
|
if args.iteration > 0 and args.consumed_valid_samples == 0: |
|
if args.train_samples is None: |
|
args.consumed_valid_samples = (args.iteration // args.eval_interval) * \ |
|
args.eval_iters * args.global_batch_size |
|
|
|
|
|
ds_sequence_parallel = mpu.get_sequence_parallel_world_size() > 1 or args.force_ds_sequence_parallel |
|
rank_in_parallel_group = mpu.get_sequence_parallel_rank() if ds_sequence_parallel else mpu.get_tensor_model_parallel_rank() |
|
if rank_in_parallel_group == 0: |
|
|
|
train_ds, valid_ds, test_ds = build_train_valid_test_datasets( |
|
build_train_valid_test_datasets_provider) |
|
|
|
if args.eval_iters == -1: |
|
eval_total_samples = len(valid_ds) |
|
consumed_valid_samples = 0 |
|
use_all_eval_samples = True |
|
else: |
|
eval_total_samples = 0 |
|
consumed_valid_samples = args.consumed_valid_samples |
|
use_all_eval_samples = False |
|
|
|
|
|
train_dataloader = build_pretraining_data_loader( |
|
train_ds, args.consumed_train_samples, True) |
|
valid_dataloader = build_pretraining_data_loader( |
|
valid_ds, consumed_valid_samples, False, use_all_eval_samples) |
|
test_dataloader = build_pretraining_data_loader(test_ds, 0, False) |
|
|
|
|
|
do_train = train_dataloader is not None and args.train_iters > 0 |
|
do_valid = valid_dataloader is not None and (args.eval_iters > 0 or args.eval_iters == -1) |
|
do_test = test_dataloader is not None and args.eval_iters > 0 |
|
|
|
flags = get_accelerator().LongTensor( |
|
[int(do_train), int(do_valid), int(do_test), int(eval_total_samples)]) |
|
else: |
|
flags = get_accelerator().LongTensor([0, 0, 0, 0]) |
|
|
|
|
|
if ds_sequence_parallel: |
|
torch.distributed.broadcast(flags, |
|
mpu.get_sequence_parallel_src_rank(), |
|
group=mpu.get_sequence_parallel_group()) |
|
else: |
|
torch.distributed.broadcast(flags, |
|
mpu.get_tensor_model_parallel_src_rank(), |
|
group=mpu.get_tensor_model_parallel_group()) |
|
args.do_train = flags[0].item() |
|
args.do_valid = flags[1].item() |
|
args.do_test = flags[2].item() |
|
args.eval_total_samples = flags[3].item() |
|
|
|
return train_dataloader, valid_dataloader, test_dataloader |
|
|
|
|
|
def build_train_valid_test_data_iterators( |
|
build_train_valid_test_datasets_provider): |
|
"""Build pretraining data iterators.""" |
|
|
|
args = get_args() |
|
|
|
|
|
train_dataloader, valid_dataloader, test_dataloader = \ |
|
build_train_valid_test_data_loaders( |
|
build_train_valid_test_datasets_provider) |
|
|
|
|
|
dl_type = args.dataloader_type |
|
assert dl_type in ['single', 'cyclic'] |
|
|
|
if train_dataloader is not None: |
|
train_data_iterator = iter(train_dataloader) if dl_type == 'single' \ |
|
else iter(cyclic_iter(train_dataloader)) |
|
else: |
|
train_data_iterator = None |
|
|
|
if valid_dataloader is not None: |
|
valid_data_iterator = iter(valid_dataloader) if (dl_type == 'single' and args.eval_iters != -1) \ |
|
else iter(cyclic_iter(valid_dataloader)) |
|
else: |
|
valid_data_iterator = None |
|
|
|
if test_dataloader is not None: |
|
test_data_iterator = iter(test_dataloader) if dl_type == 'single' \ |
|
else iter(cyclic_iter(test_dataloader)) |
|
else: |
|
test_data_iterator = None |
|
|
|
return train_data_iterator, valid_data_iterator, test_data_iterator |
|
|