|
|
|
|
|
"""Pretrain BERT""" |
|
|
|
from functools import partial |
|
|
|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from megatron import get_args |
|
from megatron import print_rank_0 |
|
from megatron import get_timers |
|
from megatron.core import tensor_parallel |
|
from megatron.core.enums import ModelType |
|
from megatron.data.dataset_utils import build_train_valid_test_datasets |
|
from megatron.model import BertModel |
|
from megatron.training import pretrain |
|
from megatron.utils import average_losses_across_data_parallel_group |
|
from megatron.arguments import core_transformer_config_from_args |
|
|
|
|
|
def model_provider(pre_process=True, post_process=True): |
|
"""Build the model.""" |
|
|
|
print_rank_0('building BERT model ...') |
|
|
|
args = get_args() |
|
config = core_transformer_config_from_args(args) |
|
num_tokentypes = 2 if args.bert_binary_head else 0 |
|
model = BertModel( |
|
config=config, |
|
num_tokentypes=num_tokentypes, |
|
add_binary_head=args.bert_binary_head, |
|
parallel_output=True, |
|
pre_process=pre_process, |
|
post_process=post_process) |
|
|
|
return model |
|
|
|
|
|
def get_batch(data_iterator): |
|
"""Build the batch.""" |
|
|
|
|
|
keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask'] |
|
datatype = torch.int64 |
|
|
|
|
|
if data_iterator is not None: |
|
data = next(data_iterator) |
|
else: |
|
data = None |
|
data_b = tensor_parallel.broadcast_data(keys, data, datatype) |
|
|
|
|
|
tokens = data_b['text'].long() |
|
types = data_b['types'].long() |
|
sentence_order = data_b['is_random'].long() |
|
loss_mask = data_b['loss_mask'].float() |
|
lm_labels = data_b['labels'].long() |
|
padding_mask = data_b['padding_mask'].long() |
|
|
|
return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask |
|
|
|
def data_post_process(data, data_sampler_state_dict): |
|
args = get_args() |
|
if args.data_efficiency_curriculum_learning: |
|
if 'seqlen_truncate' in data_sampler_state_dict['current_difficulties']: |
|
effective_seqlen = data_sampler_state_dict['current_difficulties']['seqlen_truncate'] |
|
else: |
|
effective_seqlen = torch.count_nonzero(data['padding_mask'], dim=1) |
|
effective_seqlen = torch.max(effective_seqlen).to(torch.cuda.current_device()) |
|
torch.distributed.all_reduce(effective_seqlen, |
|
op=torch.distributed.ReduceOp.MAX, |
|
group=mpu.get_data_parallel_group()) |
|
effective_seqlen = effective_seqlen.item() |
|
|
|
if effective_seqlen % 8 != 0: |
|
effective_seqlen = math.ceil(effective_seqlen / 8) * 8 |
|
if effective_seqlen < args.seq_length: |
|
data['text'] = data['text'][:, :effective_seqlen].contiguous() |
|
data['types'] = data['types'][:, :effective_seqlen].contiguous() |
|
data['loss_mask'] = data['loss_mask'][:, :effective_seqlen].contiguous() |
|
data['labels'] = data['labels'][:, :effective_seqlen].contiguous() |
|
data['padding_mask'] = data['padding_mask'][:, :effective_seqlen].contiguous() |
|
return data |
|
|
|
def loss_func(loss_mask, sentence_order, output_tensor): |
|
lm_loss_, sop_logits = output_tensor |
|
|
|
lm_loss_ = lm_loss_.float() |
|
loss_mask = loss_mask.float() |
|
lm_loss = torch.sum( |
|
lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() |
|
|
|
if sop_logits is not None: |
|
sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(), |
|
sentence_order.view(-1), |
|
ignore_index=-1) |
|
sop_loss = sop_loss.float() |
|
loss = lm_loss + sop_loss |
|
averaged_losses = average_losses_across_data_parallel_group( |
|
[lm_loss, sop_loss]) |
|
return loss, {'lm loss': averaged_losses[0], |
|
'sop loss': averaged_losses[1]} |
|
|
|
else: |
|
loss = lm_loss |
|
averaged_losses = average_losses_across_data_parallel_group( |
|
[lm_loss]) |
|
return loss, {'lm loss': averaged_losses[0]} |
|
|
|
|
|
def forward_step(data_iterator, model): |
|
"""Forward step.""" |
|
args = get_args() |
|
timers = get_timers() |
|
|
|
|
|
timers('batch-generator', log_level=2).start() |
|
tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = get_batch( |
|
data_iterator) |
|
timers('batch-generator').stop() |
|
|
|
if args.data_efficiency_curriculum_learning: |
|
args.curriculum_seqlen = tokens.size()[1] |
|
|
|
if not args.bert_binary_head: |
|
types = None |
|
|
|
|
|
output_tensor = model(tokens, padding_mask, tokentype_ids=types, |
|
lm_labels=lm_labels) |
|
|
|
return output_tensor, partial(loss_func, loss_mask, sentence_order) |
|
|
|
|
|
def train_valid_test_datasets_provider(train_val_test_num_samples): |
|
"""Build train, valid, and test datasets.""" |
|
args = get_args() |
|
|
|
print_rank_0('> building train, validation, and test datasets ' |
|
'for BERT ...') |
|
train_ds, valid_ds, test_ds = build_train_valid_test_datasets( |
|
data_prefix=args.data_path, |
|
data_impl=args.data_impl, |
|
splits_string=args.split, |
|
train_valid_test_num_samples=train_val_test_num_samples, |
|
max_seq_length=args.seq_length, |
|
masked_lm_prob=args.mask_prob, |
|
short_seq_prob=args.short_seq_prob, |
|
seed=args.seed, |
|
skip_warmup=(not args.mmap_warmup), |
|
binary_head=args.bert_binary_head) |
|
print_rank_0("> finished creating BERT datasets ...") |
|
|
|
return train_ds, valid_ds, test_ds |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
pretrain(train_valid_test_datasets_provider, model_provider, |
|
ModelType.encoder_or_decoder, |
|
forward_step, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'}, |
|
data_post_process=data_post_process) |
|
|