|
|
|
|
|
|
|
|
|
|
|
"""Pretrain GPT""" |
|
|
|
|
|
import torch |
|
|
import math |
|
|
from functools import partial |
|
|
from megatron import get_args |
|
|
from megatron import print_rank_0 |
|
|
from megatron import get_timers |
|
|
from megatron import get_tokenizer |
|
|
from megatron.core import mpu, tensor_parallel |
|
|
from megatron.core.enums import ModelType |
|
|
from megatron.data.gpt_dataset import build_train_valid_test_datasets |
|
|
from megatron.model import GPTModel, GPTModelPipe |
|
|
from megatron.training import pretrain |
|
|
from megatron.utils import get_ltor_masks_and_position_ids |
|
|
from megatron.utils import average_losses_across_data_parallel_group, update_rotary_pos_emb |
|
|
from megatron.arguments import core_transformer_config_from_args |
|
|
|
|
|
import deepspeed |
|
|
from deepspeed.runtime.utils import see_memory_usage |
|
|
from deepspeed.accelerator.real_accelerator import get_accelerator |
|
|
import os |
|
|
import subprocess |
|
|
|
|
|
from torch import nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
def model_provider(pre_process=True, post_process=True): |
|
|
"""Build the model.""" |
|
|
|
|
|
print_rank_0('building GPT model ...') |
|
|
see_memory_usage(f"Before Building Model", force=True) |
|
|
|
|
|
if get_accelerator().device_name() == "hpu": |
|
|
os.environ['DEEPSPEED_HPU_SYNC_INSIDE_INIT'] = "1" |
|
|
os.environ['DEEPSPEED_SYNC_MICRO_BATCH_STEP'] = "1" |
|
|
|
|
|
args = get_args() |
|
|
config = core_transformer_config_from_args(args) |
|
|
with deepspeed.zero.Init(sequence_data_parallel_group=mpu.get_sequence_data_parallel_group(), |
|
|
remote_device=None if args.remote_device == 'none' else args.remote_device, |
|
|
config_dict_or_path=args.deepspeed_config, |
|
|
enabled=args.zero_stage == 3, |
|
|
mpu=mpu): |
|
|
if args.deepspeed and not args.no_pipeline_parallel: |
|
|
model = GPTModelPipe( |
|
|
config=config, |
|
|
num_tokentypes=0, |
|
|
parallel_output=True |
|
|
) |
|
|
|
|
|
|
|
|
model._megatron_batch_fn = get_batch_pipe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = torch.tril(torch.ones( |
|
|
(1, args.seq_length, args.seq_length), device=get_accelerator().current_device_name())).view( |
|
|
1, 1, args.seq_length, args.seq_length) |
|
|
|
|
|
|
|
|
attention_mask = (attention_mask < 0.5) |
|
|
if args.fp16: |
|
|
attention_mask = attention_mask.half() |
|
|
elif args.bf16: |
|
|
attention_mask = attention_mask.bfloat16() |
|
|
|
|
|
if args.mask_tensor_adding: |
|
|
args.attn_mask = attention_mask * -10000.0 |
|
|
else: |
|
|
|
|
|
args.attn_mask = attention_mask.to(torch.bool) |
|
|
|
|
|
|
|
|
if args.use_rotary_position_embeddings: |
|
|
update_rotary_pos_emb(args.seq_length) |
|
|
|
|
|
else: |
|
|
model = GPTModel( |
|
|
config=config, |
|
|
num_tokentypes=0, |
|
|
parallel_output=True, |
|
|
pre_process=pre_process, |
|
|
post_process=post_process |
|
|
) |
|
|
see_memory_usage(f"After Building Model", force=True) |
|
|
return model |
|
|
|
|
|
|
|
|
def get_batch(data_iterator): |
|
|
"""Generate a batch""" |
|
|
args = get_args() |
|
|
tokenizer = get_tokenizer() |
|
|
|
|
|
|
|
|
keys = ['text'] |
|
|
datatype = torch.int64 |
|
|
|
|
|
|
|
|
if data_iterator is not None: |
|
|
data = next(data_iterator) |
|
|
else: |
|
|
data = None |
|
|
data_b = tensor_parallel.broadcast_data(keys, data, datatype) |
|
|
|
|
|
|
|
|
tokens_ = data_b['text'].long() |
|
|
if not args.use_seq_len_plus_one_tokens: |
|
|
labels = torch.roll(tokens_, shifts=-1, dims=1) |
|
|
labels[:, -1] = -1 |
|
|
tokens = tokens_ |
|
|
else: |
|
|
labels = tokens_[:, 1:].contiguous() |
|
|
tokens = tokens_[:, :-1].contiguous() |
|
|
|
|
|
|
|
|
skip_mask = args.use_flash_attn or args.use_flash_attn_triton |
|
|
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( |
|
|
tokens, |
|
|
tokenizer.eod, |
|
|
args.reset_position_ids, |
|
|
args.reset_attention_mask, |
|
|
args.eod_mask_loss, |
|
|
skip_mask, |
|
|
labels = labels, |
|
|
dummy_sample= None,) |
|
|
|
|
|
|
|
|
seq_parallel_world_size = mpu.get_sequence_parallel_world_size() |
|
|
seq_parallel_world_rank = mpu.get_sequence_parallel_rank() |
|
|
|
|
|
|
|
|
if args.sequence_parallel: |
|
|
seq_parallel_world_size = mpu.get_tensor_model_parallel_world_size() |
|
|
seq_parallel_world_rank = mpu.get_tensor_model_parallel_rank() |
|
|
seq_length = tokens.size(1) |
|
|
|
|
|
assert seq_length % seq_parallel_world_size == 0 |
|
|
sub_seq_length = seq_length // seq_parallel_world_size |
|
|
sub_seq_start = seq_parallel_world_rank * sub_seq_length |
|
|
sub_seq_end = (seq_parallel_world_rank + 1) * sub_seq_length |
|
|
|
|
|
tokens[tokens == -1] = 0 |
|
|
labels[labels == -1] = 0 |
|
|
|
|
|
tokens = tokens[:, sub_seq_start:sub_seq_end] |
|
|
position_ids = position_ids[:, sub_seq_start:sub_seq_end] |
|
|
|
|
|
if mpu.get_sequence_parallel_world_size() > 1: |
|
|
labels = labels[:, sub_seq_start:sub_seq_end] |
|
|
|
|
|
return tokens, labels, loss_mask, attention_mask, position_ids |
|
|
|
|
|
def data_post_process(data, data_sampler_state_dict): |
|
|
args = get_args() |
|
|
if args.data_efficiency_curriculum_learning: |
|
|
if 'seqlen_truncate' in data_sampler_state_dict['current_difficulties']: |
|
|
args.data_efficiency_curriculum_learning_seqlen_type = 'seqlen_truncate' |
|
|
current_seqlen = data_sampler_state_dict['current_difficulties']['seqlen_truncate'] |
|
|
if current_seqlen < args.seq_length: |
|
|
data['text'] = data['text'][:, :(current_seqlen+1)].contiguous() |
|
|
elif 'seqlen_reshape' in data_sampler_state_dict['current_difficulties']: |
|
|
args.data_efficiency_curriculum_learning_seqlen_type = 'seqlen_reshape' |
|
|
current_seqlen = data_sampler_state_dict['current_difficulties']['seqlen_reshape'] |
|
|
if current_seqlen < args.seq_length: |
|
|
orig_num_token = torch.numel(data['text']) |
|
|
reshape_len = (data['text'].size()[1] // (current_seqlen+1)) * (current_seqlen+1) |
|
|
data['text'] = torch.cat((data['text'][:, :reshape_len].contiguous().view(-1, current_seqlen+1), |
|
|
data['text'][:, -(current_seqlen+1):]), 0).contiguous() |
|
|
num_row = math.ceil(orig_num_token / (current_seqlen+1)) |
|
|
num_row = min(num_row, data['text'].size()[0]) |
|
|
if num_row > 1 and num_row % 2 != 0: |
|
|
num_row -= 1 |
|
|
data['text'] = data['text'][:num_row, :].contiguous() |
|
|
else: |
|
|
args.data_efficiency_curriculum_learning_seqlen_type = None |
|
|
return data |
|
|
|
|
|
def get_batch_pipe(data): |
|
|
"""Modification of `get_batch` to work on `next(data_iterator)` instead of `data_iterator`""" |
|
|
args = get_args() |
|
|
tokenizer = get_tokenizer() |
|
|
|
|
|
|
|
|
keys = ['text'] |
|
|
datatype = torch.int64 |
|
|
|
|
|
|
|
|
data_b = tensor_parallel.broadcast_data(keys, data, datatype) |
|
|
|
|
|
|
|
|
tokens_ = data_b['text'].long() |
|
|
if not args.use_seq_len_plus_one_tokens: |
|
|
labels = torch.roll(tokens_, shifts=-1, dims=1) |
|
|
labels[:, -1] = -1 |
|
|
tokens = tokens_ |
|
|
else: |
|
|
labels = tokens_[:, 1:].contiguous() |
|
|
tokens = tokens_[:, :-1].contiguous() |
|
|
|
|
|
|
|
|
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( |
|
|
tokens, |
|
|
tokenizer.eod, |
|
|
args.reset_position_ids, |
|
|
args.reset_attention_mask, |
|
|
args.eod_mask_loss, |
|
|
labels = labels, |
|
|
dummy_sample = None,) |
|
|
|
|
|
tokens[tokens == -1] = 0 |
|
|
labels[labels == -1] = 0 |
|
|
|
|
|
if args.curriculum_learning_legacy and args.curriculum_seqlen < tokens.size()[1]: |
|
|
|
|
|
|
|
|
tokens = tokens[:, :args.curriculum_seqlen].contiguous() |
|
|
position_ids = position_ids[:, :args.curriculum_seqlen].contiguous() |
|
|
if labels is not None: |
|
|
labels = labels[:, :args.curriculum_seqlen].contiguous() |
|
|
loss_mask = loss_mask[:, :args.curriculum_seqlen].contiguous() |
|
|
|
|
|
return (tokens, position_ids, attention_mask), (labels, loss_mask) |
|
|
|
|
|
|
|
|
def loss_func(loss_mask, moe_loss, mos_loss, output_tensor): |
|
|
args = get_args() |
|
|
losses = output_tensor.float() |
|
|
loss_mask = loss_mask.view(-1).float() |
|
|
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() |
|
|
|
|
|
|
|
|
averaged_loss = average_losses_across_data_parallel_group([loss]) |
|
|
if args.mos or args.kd: |
|
|
|
|
|
loss = loss + moe_loss + mos_loss |
|
|
if args.mos: |
|
|
return loss, {'total loss': loss, 'lm loss': averaged_loss[0], 'moe loss': moe_loss, 'mos loss': mos_loss} |
|
|
elif args.kd: |
|
|
return loss, {'total loss': loss, 'lm loss': averaged_loss[0], 'moe loss': moe_loss, 'kd loss': mos_loss} |
|
|
print_rank_0('>>> total loss: {}, lm loss {}, kd loss {}'.format(loss, averaged_loss[0], mos_loss)) |
|
|
else: |
|
|
if max(args.num_experts) <= 1: |
|
|
return loss, {'lm loss': averaged_loss[0]} |
|
|
else: |
|
|
loss = loss + moe_loss |
|
|
return loss, {'lm loss': averaged_loss[0], 'moe loss': moe_loss} |
|
|
|
|
|
def calculate_mos_loss(args, stu_output, teacher_model, tokens, position_ids, attention_mask): |
|
|
mos_loss = 0 |
|
|
alpha = args.kd_alpha_ce |
|
|
beta = args.kd_beta_ce |
|
|
kd_temp = args.kd_temp |
|
|
|
|
|
if teacher_model: |
|
|
with torch.no_grad(): |
|
|
if args.curriculum_learning_legacy and args.curriculum_seqlen < args.seq_length: |
|
|
assert args.curriculum_seqlen is not None |
|
|
curriculum_seqlen = args.curriculum_seqlen |
|
|
tokens = tokens[:, :curriculum_seqlen].contiguous() |
|
|
position_ids = position_ids[:, :curriculum_seqlen].contiguous() |
|
|
attention_mask = attention_mask[:, :, :curriculum_seqlen, :curriculum_seqlen].contiguous() |
|
|
|
|
|
tea_output, tea_other_losses = teacher_model(tokens, position_ids, attention_mask) |
|
|
assert stu_output.size() == tea_output.size(), 'teacher and student output should match in size. Student: {}, Teacher: {}, CL seq length {}'.format(stu_output.size(), tea_output.size(), args.curriculum_seqlen) |
|
|
|
|
|
student_logits = F.log_softmax(stu_output / kd_temp, dim=2) |
|
|
tea_logits = F.softmax(tea_output / kd_temp, dim=2) |
|
|
|
|
|
mos_loss = kd_temp * kd_temp * nn.KLDivLoss(reduction='batchmean')(student_logits, tea_logits) |
|
|
|
|
|
mos_loss = mos_loss.div(args.seq_length) * beta |
|
|
return mos_loss |
|
|
|
|
|
def forward_step(data_iterator, model): |
|
|
"""Forward step.""" |
|
|
args = get_args() |
|
|
timers = get_timers() |
|
|
|
|
|
|
|
|
timers('batch-generator', log_level=2).start() |
|
|
tokens, labels, loss_mask, attention_mask, position_ids = get_batch( |
|
|
data_iterator) |
|
|
timers('batch-generator').stop() |
|
|
|
|
|
if args.data_efficiency_curriculum_learning: |
|
|
args.curriculum_seqlen = tokens.size()[1] |
|
|
if hasattr(args, 'data_efficiency_curriculum_learning_seqlen_type') and \ |
|
|
args.data_efficiency_curriculum_learning_seqlen_type == 'seqlen_reshape': |
|
|
args.data_efficiency_curriculum_learning_numel = torch.numel(tokens) |
|
|
|
|
|
if args.mos or args.kd: |
|
|
|
|
|
stu_output, other_losses = model(tokens, position_ids, attention_mask) |
|
|
if args.curriculum_learning_legacy and args.curriculum_seqlen < args.seq_length: |
|
|
assert args.curriculum_seqlen is not None |
|
|
labels = labels[:, :args.curriculum_seqlen].contiguous() |
|
|
output_tensor = tensor_parallel.vocab_parallel_cross_entropy(stu_output.contiguous().float(), labels) |
|
|
else: |
|
|
output_tensor, other_losses = model(tokens, position_ids, attention_mask, |
|
|
labels=labels) |
|
|
if args.curriculum_learning_legacy and args.curriculum_seqlen < args.seq_length: |
|
|
loss_mask = loss_mask[:, :args.curriculum_seqlen].contiguous() |
|
|
|
|
|
moe_losses = [] |
|
|
for moe_loss in other_losses: |
|
|
if moe_loss is not None: |
|
|
moe_losses.append(moe_loss) |
|
|
moe_loss = sum(moe_losses) * args.moe_loss_coeff |
|
|
|
|
|
mos_loss = 0 |
|
|
if args.mos or args.kd: |
|
|
assert model.training |
|
|
if args.teacher_forward and args.teacher_model is not None: |
|
|
mos_loss = calculate_mos_loss(args, stu_output, |
|
|
args.teacher_model[0], tokens, position_ids, attention_mask) |
|
|
|
|
|
|
|
|
return output_tensor, partial(loss_func, loss_mask, moe_loss, mos_loss) |
|
|
|
|
|
|
|
|
def train_valid_test_datasets_provider(train_val_test_num_samples): |
|
|
"""Build train, valid, and test datasets.""" |
|
|
args = get_args() |
|
|
|
|
|
print_rank_0('> building train, validation, and test datasets ' |
|
|
'for GPT ...') |
|
|
train_ds, valid_ds, test_ds = build_train_valid_test_datasets( |
|
|
data_prefix=args.data_path, |
|
|
data_impl=args.data_impl, |
|
|
splits_string=args.split, |
|
|
train_valid_test_num_samples=train_val_test_num_samples, |
|
|
seq_length=args.seq_length, |
|
|
seed=args.seed, |
|
|
skip_warmup=(not args.mmap_warmup), |
|
|
train_data_prefix=args.train_data_path, |
|
|
valid_data_prefix=args.valid_data_path, |
|
|
test_data_prefix=args.test_data_path, |
|
|
data_cache_path=args.data_cache_path, |
|
|
use_seq_len_plus_one_tokens=args.use_seq_len_plus_one_tokens) |
|
|
print_rank_0("> finished creating GPT datasets ...") |
|
|
|
|
|
return train_ds, valid_ds, test_ds |
|
|
|
|
|
|
|
|
def command_exists(cmd): |
|
|
result = subprocess.Popen(f'type {cmd}', stdout=subprocess.PIPE, shell=True) |
|
|
return result.wait() == 0 |
|
|
|
|
|
|
|
|
def git_ds_info(): |
|
|
from deepspeed.env_report import main as ds_report |
|
|
ds_report() |
|
|
|
|
|
|
|
|
git_hash_cmd = "git rev-parse --short HEAD" |
|
|
git_branch_cmd = "git rev-parse --abbrev-ref HEAD" |
|
|
if command_exists('git'): |
|
|
try: |
|
|
result = subprocess.check_output(git_hash_cmd, shell=True) |
|
|
git_hash = result.decode('utf-8').strip() |
|
|
result = subprocess.check_output(git_branch_cmd, shell=True) |
|
|
git_branch = result.decode('utf-8').strip() |
|
|
except subprocess.CalledProcessError: |
|
|
git_hash = "unknown" |
|
|
git_branch = "unknown" |
|
|
else: |
|
|
git_hash = "unknown" |
|
|
git_branch = "unknown" |
|
|
print(f'**** Git info for Megatron: git_hash={git_hash} git_branch={git_branch} ****') |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
git_ds_info() |
|
|
pretrain(train_valid_test_datasets_provider, |
|
|
model_provider, |
|
|
ModelType.encoder_or_decoder, |
|
|
forward_step, |
|
|
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'}, |
|
|
data_post_process=data_post_process) |
|
|
|