|
|
|
|
|
|
|
|
"""Pretrain GPT""" |
|
|
|
|
|
import torch |
|
|
from functools import partial |
|
|
from megatron import get_args |
|
|
from megatron.arguments import core_transformer_config_from_args |
|
|
from megatron import print_rank_0 |
|
|
from megatron import get_timers |
|
|
from megatron import get_tokenizer |
|
|
from megatron.core import tensor_parallel |
|
|
from megatron.core.enums import ModelType |
|
|
from megatron.data.gpt_dataset import build_train_valid_test_datasets |
|
|
from megatron.core.models.gpt import GPTModel |
|
|
from megatron.training import pretrain |
|
|
from megatron.utils import get_ltor_masks_and_position_ids |
|
|
from megatron.utils import average_losses_across_data_parallel_group |
|
|
|
|
|
def model_provider(pre_process=True, post_process=True): |
|
|
"""Build the model.""" |
|
|
|
|
|
args = get_args() |
|
|
config = core_transformer_config_from_args(args) |
|
|
|
|
|
print_rank_0('building GPT model ...') |
|
|
model = GPTModel( |
|
|
config=config, |
|
|
vocab_size=args.padded_vocab_size, |
|
|
max_sequence_length=args.max_position_embeddings, |
|
|
pre_process=pre_process, |
|
|
post_process=post_process, |
|
|
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy, |
|
|
parallel_output=True, |
|
|
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights |
|
|
) |
|
|
return model |
|
|
|
|
|
|
|
|
def get_batch(data_iterator): |
|
|
"""Generate a batch""" |
|
|
args = get_args() |
|
|
tokenizer = get_tokenizer() |
|
|
|
|
|
|
|
|
keys = ['text'] |
|
|
datatype = torch.int64 |
|
|
|
|
|
|
|
|
if data_iterator is not None: |
|
|
data = next(data_iterator) |
|
|
else: |
|
|
data = None |
|
|
data_b = tensor_parallel.broadcast_data(keys, data, datatype) |
|
|
|
|
|
|
|
|
tokens_ = data_b['text'].long() |
|
|
labels = tokens_[:, 1:].contiguous() |
|
|
tokens = tokens_[:, :-1].contiguous() |
|
|
|
|
|
|
|
|
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( |
|
|
tokens, |
|
|
tokenizer.eod, |
|
|
args.reset_position_ids, |
|
|
args.reset_attention_mask, |
|
|
args.eod_mask_loss) |
|
|
|
|
|
return tokens, labels, loss_mask, attention_mask, position_ids |
|
|
|
|
|
def loss_func(loss_mask, output_tensor): |
|
|
losses = output_tensor.float() |
|
|
loss_mask = loss_mask.view(-1).float() |
|
|
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() |
|
|
|
|
|
|
|
|
averaged_loss = average_losses_across_data_parallel_group([loss]) |
|
|
|
|
|
return loss, {'lm loss': averaged_loss[0]} |
|
|
|
|
|
|
|
|
def forward_step(data_iterator, model): |
|
|
"""Forward step.""" |
|
|
args = get_args() |
|
|
timers = get_timers() |
|
|
|
|
|
|
|
|
timers('batch-generator', log_level=2).start() |
|
|
tokens, labels, loss_mask, attention_mask, position_ids = get_batch( |
|
|
data_iterator) |
|
|
timers('batch-generator').stop() |
|
|
|
|
|
output_tensor = model(tokens, position_ids, attention_mask, |
|
|
labels=labels) |
|
|
|
|
|
return output_tensor, partial(loss_func, loss_mask) |
|
|
|
|
|
|
|
|
def train_valid_test_datasets_provider(train_val_test_num_samples): |
|
|
"""Build train, valid, and test datasets.""" |
|
|
args = get_args() |
|
|
|
|
|
print_rank_0('> building train, validation, and test datasets ' |
|
|
'for GPT ...') |
|
|
train_ds, valid_ds, test_ds = build_train_valid_test_datasets( |
|
|
data_prefix=args.data_path, |
|
|
data_impl=args.data_impl, |
|
|
splits_string=args.split, |
|
|
train_valid_test_num_samples=train_val_test_num_samples, |
|
|
seq_length=args.seq_length, |
|
|
seed=args.seed, |
|
|
skip_warmup=(not args.mmap_warmup), |
|
|
train_data_prefix=args.train_data_path, |
|
|
valid_data_prefix=args.valid_data_path, |
|
|
test_data_prefix=args.test_data_path) |
|
|
print_rank_0("> finished creating GPT datasets ...") |
|
|
|
|
|
return train_ds, valid_ds, test_ds |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
pretrain(train_valid_test_datasets_provider, model_provider, |
|
|
ModelType.encoder_or_decoder, |
|
|
forward_step, |
|
|
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'} |
|
|
) |
|
|
|