|
|
|
|
|
"""Pretrain Retro.""" |
|
|
|
from functools import partial |
|
import torch |
|
|
|
from megatron import get_args, get_retro_args |
|
from megatron import get_timers |
|
from megatron import get_tokenizer |
|
from megatron import print_rank_0 |
|
from megatron.core import mpu, tensor_parallel |
|
from megatron.core.enums import ModelType |
|
from megatron.model import GPTModel |
|
from megatron.training import pretrain |
|
from megatron.utils import get_ltor_masks_and_position_ids |
|
from tools.retro.query.retro_dataset import get_retro_datasets |
|
|
|
from pretrain_gpt import ( |
|
loss_func, |
|
model_provider, |
|
train_valid_test_datasets_provider as standard_datasets_provider, |
|
) |
|
|
|
|
|
def get_batch(data_iterator): |
|
"""Generate a batch""" |
|
args = get_args() |
|
retro_args = get_retro_args() |
|
tokenizer = get_tokenizer() |
|
|
|
|
|
keys = ['text'] |
|
datatype = torch.int64 |
|
|
|
if args.retro_add_retriever: |
|
keys += 'neighbor_tokens', |
|
|
|
|
|
if data_iterator is not None: |
|
data = next(data_iterator) |
|
else: |
|
data = None |
|
|
|
data_b = tensor_parallel.broadcast_data(keys, data, datatype) |
|
|
|
|
|
tokens_ = data_b['text'].long() |
|
labels = tokens_[:, 1:].contiguous() |
|
tokens = tokens_[:, :-1].contiguous() |
|
|
|
if args.retro_add_retriever: |
|
|
|
|
|
neighbor_tokens = data_b['neighbor_tokens'] \ |
|
.view(-1, retro_args.retro_gpt_retrieved_length).long() |
|
|
|
|
|
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( |
|
tokens, |
|
tokenizer.eod, |
|
args.reset_position_ids, |
|
args.reset_attention_mask, |
|
args.eod_mask_loss) |
|
|
|
if args.retro_add_retriever: |
|
_, _, neighbor_position_ids = get_ltor_masks_and_position_ids( |
|
neighbor_tokens, |
|
tokenizer.eod, |
|
args.reset_position_ids, |
|
args.reset_attention_mask, |
|
args.eod_mask_loss) |
|
neighbor_attention_mask = None |
|
return tokens, labels, loss_mask, attention_mask, position_ids, \ |
|
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids |
|
else: |
|
return tokens, labels, loss_mask, attention_mask, position_ids |
|
|
|
|
|
def forward_step(data_iterator, model): |
|
"""Forward step.""" |
|
args = get_args() |
|
timers = get_timers() |
|
|
|
|
|
timers('batch-generator').start() |
|
if args.retro_add_retriever: |
|
tokens, labels, loss_mask, attention_mask, position_ids, \ |
|
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \ |
|
get_batch(data_iterator) |
|
else: |
|
tokens, labels, loss_mask, attention_mask, position_ids = get_batch( |
|
data_iterator) |
|
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \ |
|
None, None, None |
|
timers('batch-generator').stop() |
|
|
|
output_tensor = model(tokens, position_ids, attention_mask, |
|
retriever_input_ids=neighbor_tokens, |
|
retriever_position_ids=neighbor_position_ids, |
|
retriever_attn_mask=neighbor_attention_mask, |
|
labels=labels) |
|
|
|
return output_tensor, partial(loss_func, loss_mask) |
|
|
|
|
|
def train_valid_test_datasets_provider(train_val_test_num_samples): |
|
"""Build train, valid, and test datasets.""" |
|
args = get_args() |
|
if args.retro_add_retriever: |
|
return get_retro_datasets() |
|
else: |
|
return standard_datasets_provider(train_val_test_num_samples) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
pretrain(train_valid_test_datasets_provider, |
|
model_provider, |
|
ModelType.retro_decoder, |
|
forward_step, |
|
args_defaults={'tokenizer_type': 'GPT2BPETokenizer', |
|
'retro_add_retriever': True}) |
|
|