peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/pretrain_vision_classify.py
| # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
| """Pretrain VIT""" | |
| import torch | |
| import torch.nn.functional as F | |
| from functools import partial | |
| from megatron import get_args, get_timers, print_rank_0 | |
| from megatron.core.enums import ModelType | |
| from megatron.data.vit_dataset import build_train_valid_datasets | |
| from megatron.model.vision.classification import VitClassificationModel | |
| from megatron.model.vision.classification import MitClassificationModel | |
| from megatron.training import pretrain | |
| from megatron.utils import average_losses_across_data_parallel_group | |
| from megatron.arguments import core_transformer_config_from_args | |
| def model_provider(pre_process=True, post_process=True): | |
| """Build the model.""" | |
| args = get_args() | |
| config = core_transformer_config_from_args(args) | |
| if args.vision_backbone_type == 'vit': | |
| print_rank_0("building VIT model ...") | |
| model = VitClassificationModel(config=config, | |
| num_classes=args.num_classes, | |
| pre_process=pre_process, | |
| post_process=post_process) | |
| elif args.vision_backbone_type == 'mit': | |
| print_rank_0("building MIT model ...") | |
| model = MitClassificationModel(num_classes=args.num_classes, | |
| pre_process=pre_process, | |
| post_process=post_process) | |
| else: | |
| raise Exception('{} vision backbone is not supported.'.format( | |
| args.vision_backbone_type)) | |
| return model | |
| def get_batch(data_iterator): | |
| """Build the batch.""" | |
| data = next(data_iterator) | |
| # only data parallelism; no need for broadcast | |
| images = data[0].cuda() | |
| labels = data[1].cuda() | |
| return images, labels | |
| def loss_func(labels, output_tensor): | |
| logits = output_tensor.contiguous().float() | |
| loss = F.cross_entropy(logits, labels) | |
| outputs = torch.argmax(logits, -1) | |
| correct = (outputs == labels).float() | |
| accuracy = torch.mean(correct) | |
| averaged_loss = average_losses_across_data_parallel_group([loss, accuracy]) | |
| return loss, {"loss": averaged_loss[0], "accuracy": averaged_loss[1]} | |
| def forward_step(data_iterator, model): | |
| """Forward step.""" | |
| timers = get_timers() | |
| # Get the batch. | |
| timers("batch-generator", log_level=2).start() | |
| ( | |
| images, | |
| labels, | |
| ) = get_batch(data_iterator) | |
| timers("batch-generator").stop() | |
| # Forward model. lm_labels | |
| output_tensor = model(images) | |
| return output_tensor, partial(loss_func, labels) | |
| def train_valid_test_datasets_provider(train_val_test_num_samples): | |
| """Build train, valid, and test datasets.""" | |
| args = get_args() | |
| print_rank_0( | |
| "> building train, validation, and test datasets " "for VIT ..." | |
| ) | |
| train_ds, valid_ds = build_train_valid_datasets( | |
| data_path=args.data_path, | |
| image_size=(args.img_h, args.img_w) | |
| ) | |
| print_rank_0("> finished creating VIT datasets ...") | |
| return train_ds, valid_ds, None | |
| if __name__ == "__main__": | |
| pretrain( | |
| train_valid_test_datasets_provider, | |
| model_provider, | |
| ModelType.encoder_or_decoder, | |
| forward_step, | |
| args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True} | |
| ) | |