peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/eval_harness
/report-to-csv.py
#!/usr/bin/env python | |
# This code is originally from https://github.com/bigscience-workshop/Megatron-DeepSpeed | |
# under the license https://huggingface.co/spaces/bigscience/license | |
# this script converts results.json: | |
# | |
# "results": { | |
# "arc_challenge": { | |
# "acc": 0.24232081911262798, | |
# "acc_stderr": 0.01252159329580012, | |
# "acc_norm": 0.2764505119453925, | |
# "acc_norm_stderr": 0.013069662474252425 | |
# }, | |
# | |
# into a format expected by a spreadsheet, which is: | |
# | |
# task metric value err | |
# arc_challenge acc xxx yyy | |
# arc_challenge acc_norm xxx yyy | |
# arc_challenge f1 xxx yyy | |
# | |
# usage: | |
# report-to-csv.py results.json | |
import sys | |
import json | |
import io | |
import csv | |
results_file = sys.argv[1] | |
csv_file = results_file.replace("json", "csv") | |
print(f"Converting {results_file} to {csv_file}") | |
with io.open(results_file, 'r', encoding='utf-8') as f: | |
results = json.load(f) | |
with io.open(csv_file, 'w', encoding='utf-8') as f: | |
writer = csv.writer(f) | |
writer.writerow(["task", "metric", "value", "err", "version"]) | |
versions = results["versions"] | |
for k,v in sorted(results["results"].items()): | |
if k not in versions: | |
versions[k] = -1 | |
if "acc" in v: | |
writer.writerow([k, "acc", v["acc"], v["acc_stderr"], versions[k]]) | |
if "acc_norm" in v: | |
writer.writerow([k, "acc_norm", v["acc_norm"], v["acc_norm_stderr"], versions[k]]) | |
if "f1" in v: | |
writer.writerow([k, "f1", v["f1"], v["f1_stderr"] if "f1_stderr" in v else "", versions[k]]) | |
# if "ppl" in v: | |
# writer.writerow([k, "ppl", v["ppl"], v["ppl_stderr"], versions[k]]) | |
# if "em" in v: | |
# writer.writerow([k, "em", v["em"], v["em_stderr"] if "em_stderr" in v else "", versions[k]]) | |